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Standard boundary conditions �BCs� for electron-transport simulators are based on specifying the value of

the scalar potential �or the electric field� and the charge density at the borders of the simulation box. Due to the

computational burden associated to quantum or atomistic descriptions, the use of small simulation boxes that

exclude the leads is a mandatory requirement in modern nanoscale simulators. However, if the leads �where

screening takes place� are excluded, standard BCs become inaccurate. In this work, we develop analytical

expressions for the charge density, the electric field, and the scalar potential along the leads and reservoirs.

From these expressions, we present a �time-dependent� BCs algorithm that transfers the specification of the

BCs at the boundaries of the simulation box to a deeper position inside the reservoirs. Numerical solutions of

the time-dependent Boltzmann equation with our algorithm using large �reservoir, leads, and sample� and small

�sample alone� simulation boxes are compared, showing an excellent agreement even at �far from equilibrium�
high bias conditions. Numerical results demonstrating the limitations of standard BCs for small simulation

boxes are presented. Finally, time-dependent simulations of a resonant tunneling diode �using a quantum

trajectory-based simulator� are presented, emphasizing the ability of this BCs algorithm to ensure overall

charge neutrality in simulation boxes much smaller than the total lead-sample-lead length. This BCs algorithm

requires a minimum computational effort and it can be applied to study dc, ac, and current or voltage fluctua-

tions in nanoscale devices.
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I. INTRODUCTION

In order to correctly model the dc and/or ac conductance

of nanoscale systems, one has to ensure “overall charge neu-

trality” and “current conservation.”1,2 The implementation of

such requirements into modern nanoscale electron simulators

demands some kind of reasonable approximation for the

Coulomb interaction.

On one hand, the importance of overall charge neutrality

�i.e., that the total charge in the whole device is zero� in

nanoscale ballistic devices was clarified by the work of Lan-

dauer, Büttiker, and co-workers3 on the “two-terminal” and

the “four-terminal” conductance of ballistic devices. The

well-known standard textbook expression of the dc �zero-

temperature� conductance through a tunneling obstacle is

known as the two-terminal equation because it is defined as

the current divided by the voltage drop sufficiently far from

the obstacle. However, the original formulation of the con-

ductance proposed by Landauer4,5 in 1957 was known as the

four-terminal conductance because its experimental valida-

tion needs two additional voltage probes to measure the volt-

age drop close to the tunneling obstacle. The presence of

resistances in the leads6 explains the difference between both

expressions. The ultimate origin of such resistances is the

requirement of overall charge neutrality that transforms un-

balanced charges in the leads into a voltage drop there, via

the Poisson �Gauss� equation. See Appendix A for a qualita-

tive discussion of such lead resistances.

On the other hand, the “current conservation” �i.e., the

total current computed on a surface in the simulation box is

equal to the total current measured on a surface of an amme-

ter located far from the sample� is a necessary requirement

for the prediction of ac conductances. The explicit consider-

ation of the displacement current, i.e., the time-dependent
variations in the electric field, assures that the total �conduc-
tion plus displacement� current density is a divergenceless
vector. Important theoretical contributions were done by Büt-
tiker and co-workers for predicting ac properties of mesos-

copic systems within a frequency-dependent scattering ma-

trix formalism, in weakly nonlinear regimes taking into

account overall charge neutrality and current

conservation.1,7–12

In general, modern electron-transport simulators do in-

clude reasonable approximations for the Coulomb interac-

tions that can guarantee the accomplishment of the overall-

charge-neutrality requirement. In addition, those simulators

that are developed within a time-dependent or frequency-

dependent framework can also assure the current conserva-

tion requirement. However, the powerful treatment of quan-

tum and atomistic effects can only be applied to a very

limited number of degrees of freedom.13 In fact, due to com-

putational restrictions, a small simulation box is a mandatory

requirement in many modern simulators. Here, the adjective

small means that the leads are directly excluded from the

simulation box. Neglecting the leads implies serious difficul-

ties for the achievement of overall charge neutrality in the

simulation box because the unbalanced charge in the leads is

not considered. In addition, a possible inaccuracy in the com-

putation of the overall charge neutrality affects our ability to

treat the time-dependent Coulomb correlation among elec-

trons and, therefore, the requirement of current conservation.

In conclusion, due to computational difficulties, modern

electron-transport simulators have to be implemented in

small simulation boxes that imply important difficulties for

providing dc or ac conductances of nanoscale devices be-

cause they neglect the lead-sample Coulomb correlation. An

PHYSICAL REVIEW B 82, 085301 �2010�

1098-0121/2010/82�8�/085301�21� ©2010 The American Physical Society085301-1



exception to this conclusion appears in nanoscale devices
with metallic leads that imply screening lengths of few
Angstroms.14,15 However, many other scenarios with highly
doped polysilicon leads or modern junctionless devices16

have screening length on the order of few nanometers. In
addition, in all scenarios with far-from equilibrium condi-
tions �with high bias�, the screening length in the leads have
to be complemented by the presence of a depletion length
there.

In principle, the problem of excluding the leads from the
simulation box, while retaining the lead-sample Coulomb
correlation, could be solvable by providing adequate bound-
ary conditions �BCs� on each of the “open” borders of the
simulation box.17 In the literature, there are many different
and successful BCs �Refs. 18–39� for describing nanoscale
electron devices with simulation boxes large enough to in-
clude the leads. However, BCs found in the literature are not
directly applicable for small simulation boxes. This is the

main motivation of this work. Before presenting our BCs

proposal, let us describe the standard BCs found in the lit-

erature for nanoscale electron device simulators. They are

based on specifying two conditions at each of the borders of

the simulation box:

(i) “Border_charge_BCs.” The charge density inside the

simulation box depends on the electrons injected from its

borders. Therefore, any BCs algorithm for electron devices

has to include information on the charge density at the bor-

ders as an additional BCs assumption.

(ii) “Border_potential_BCs.” The value of the scalar po-

tential �or electric field� on the borders of the simulation box

has to be specified. This condition is a direct consequence of

the uniqueness theorem for the Poisson equation17 which en-

sures that these values are enough to completely determine

the solution of Poisson equation, when the charge inside the

simulation domain is perfectly determined.

In many cases, the electrons injected through the bound-

aries depend, somehow, on the scalar potential determined by

the “border_potential_BCs” �and a fixed electrochemical

potential�. Therefore, a coupled system of the two BCs ap-

pears.

Elaborated semiclassical electron-transport simulators

solve the time-dependent Boltzmann equation by means

of the Monte Carlo �MC� technique. In particular, most of

them fix the potential at the borders of the box equal to the

external bias and assume an ad hoc modification of the in-

jection rate to achieve local charge neutrality.18–26 Some

works do also include analytically the series resistances of a

large reservoir27 which can be considered an improvement

over the previous “border_potential_BCs.” Other MC simu-

lators consider Neumann BCs �i.e., a fixed zero electric field

for “border_potential_BCs”�.28 In principle, there are no

computational difficulties in applying the semiclassical MC

technique in large ��50–100 nm� simulation boxes. Never-

theless, the possibility of using smaller boxes will be very

welcomed for some intensive time-consuming simulations.

For example, to repeat multiple ��100 000� simulations to

obtain statistical information about the macroscopic role of

some uncertain microscopic parameter �such as impurity

positions�;29 to simulate real three-dimensional �3D� solu-

tions of the Poisson equation �involving matrix inversions of

�2–3000 nodes�,30 to compute �not only average values,
but� current or voltage fluctuations that need very large simu-
lation times �with �105 and 106 time steps� to obtain reason-
able estimators,21–23 to go beyond mean-field
approximations,30 etc.

The development of electron-transport simulators with the
explicit consideration of the wave nature of electrons implies
an important increase in the computational burden. The use
of the external bias as the Dirichlet BCs �“border_potential-
_BCs”� was quite usual31,32 in the simulation of ballistic
electron devices such as the resonant tunneling diode �RTD�.
The “border_charge_BCs” was directly specified from the
energy difference between the fixed scalar potential and the
fixed electrochemical potential. In 1989, Pötz33 was one of
the first in emphasizing the importance of flexible BCs at the
borders of the simulation boxes of RTD to ensure local
charge neutrality. Recently, more elaborated quantum-
mechanical simulators are being used based on the self-

consistent solution of the nonequilibrium Green’s functions

and Poisson equation pioneered by Datta.34–39 They use ei-

ther Dirichlet-type BCs �Refs. 34 and 35� or Newmann BCs

�Refs. 36–39� for the “border_potential_BCs.” Again, the

“border_charge_BCs” condition was indirectly determined

from a fixed electrochemical potential and a fixed or floating

scalar potential. All these BCs algorithms are very successful

because they are implemented into simulation boxes large

enough to explicitly include the leads. However, such algo-

rithms are basically developed for static scenarios within a

mean-field treatment of the Coulomb interaction. Its exten-

sion to time-dependent scenarios or the inclusion of correla-

tions beyond the mean-field approximation has many com-

putational difficulties that will certainly benefit from the

possibility of using smaller simulation boxes.

As mentioned in the initial paragraphs, the extension of

such quantum-transport to time-dependent scenarios is a

complicated issue that requires not only overall charge neu-

trality but also current conservation. Büttiker and co-workers

were the first to study quantum ac conductances with both

requirements. They applied different many-body approxima-

tions �a simple one potential per conductor,7 a Thomas-Fermi

screening potential,8 Hartree-type approximations,9 a treat-

ment of the electron-electron interactions on the level of a

Hartree-Fock approach,10 and also a generalization of the

scattering matrix to deal with a Coulomb blockade system11�
to provide self-consistent theories for the ac conductance of

mesoscopic systems. As a relevant example of their deep

understanding of time-dependent mesoscopic scenarios, they

predicted the value of the resistance in a quantum RC �single

electronic mode� circuit,12 which has been recently experi-

mentally confirmed.40 However, the practical implementation

of the Büttiker theory for ac conductance in real RTD �with

two-dimensional �2D� or 3D treatments� has many computa-

tional difficulties because of the use of large simulation

boxes that have to include the leads explicitly �see Refs. 41

and 42�.
Finally, there are even more computational difficulties in

using large simulation boxes to include the leads in the so-

called “first-principles” electron-transport simulators because

of the huge demand of computational resources for their ato-

mistic description. One strategy of such first-principles
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simulators14,15 is based on dividing the whole system in three
regions �left lead, sample,6 and right lead� and solving them
separately. Once the �Hartree� potentials at the leads are
known, the solution of the potentials in the sample is ob-
tained by imposing that the Hartree potential in the simula-
tion box matches those in the leads at equilibrium. If an
external bias is applied, they shift the scalar �Hartree� poten-
tial between each lead exactly equal to this applied bias con-
sidering a negligible voltage drop in the leads. This specifies
“border_potential_BCs” assuming that the screening effects
are shorter than few tens of Angstroms. However, as dis-
cussed in the introduction, such small screening lengths are
only applicable for metallic leads close to equilibrium but
invalid in most practical scenarios of electron devices. In
addition, although it is not explicitly explained, the “border-
_charge_BCs” is determined from standard Fermi �zero-
temperature� statistics that depend on the energetic separa-
tion between a fixed electrochemical potential and the

bottom of the conduction band. Whether or not such condi-

tion implies local or overall charge neutrality in the whole

structure is not considered. Another approach is the one de-

veloped by Di Ventra, Lang, and co-workers43–47 where a

specific discussion of the “border_charge_BCs” to ensure

overall charge neutrality inside the simulation box is consid-

ered. Assuming a jellium model for the leads and letting the

bottom of the conduction band to move relative to the elec-

trochemical potential, they are able to assure overall charge

neutrality in their lead-sample-lead simulation box. Their al-

gorithm imposes an energy separation between a fixed elec-

trochemical potential and a floating bottom of the conduction

band �i.e., “border_potential_BCs”� that provides local

charge neutrality deep inside the leads. In addition, an ad hoc

�delta� charge density has to be included into the sample-lead

interface �without any clear physical justification�, in order to

make compatible their local and global charge-neutrality re-

quirements. Once more, the algorithm is numerically applied

to systems with leads and small screening length. The modi-

fication of the previous BCs toward explicit time-dependent

density-functional models, where the requirement of current

conservation will be necessary, is starting to be

developed.46–49

In summary, the strategies mentioned above for specify-

ing the BCs at the borders of the simulation box are similar

for classical or quantum simulators. However, as we will

show numerically in Sec. IV B, none of these BCs can be

applied in simulation boxes that explicitly exclude the leads.

The successful educated guesses applied in large simulation

boxes become inapplicable in small simulation boxes. Nei-

ther the charge density, nor the electric field nor the scalar

potential has easily predictable values at the borders of the

sample. In addition, the energy distribution of electrons close

to the active region can be very different from its thermal

energy distribution deep inside the reservoirs. Therefore, the

value of the electrochemical potential deep inside has no

direct relevance close to the sample. The key point of our

BCs is that we will not impose any of the previous require-

ments at the borders of the sample. We will obtain analytical

expressions for the charge density, electric field, and scalar

potential in the leads. Such analytical expression will allow

us to transfer the BC deep inside the reservoirs into informa-

tion of charge density, electric field, and scalar potential at

the sample borders. This BCs algorithm requires a minimum

computational effort and it can be implemented into either

quantum or classical time-dependent simulators with large or

small simulation boxes, for dc and ac conditions, and even

for the study of current �or voltage� fluctuations.

The structure of this paper is as follow. After this intro-

duction, in Sec. II, we discuss some preliminary issues that

will be used for the description of the BCs. In particular, we

first discuss the time-dependent overall charge neutrality re-

quirements, modeled through the dielectric relaxation time.

Later, we present a simple parametric analytical expression

of the impedance of the leads. Finally, we present a time-

dependent degenerate injection model to control the charge

density at the borders of the simulation box. In Sec. III, we

develop our original time-dependent BCs algorithm taking

into account all the ingredients discussed in Sec. II. In Sec.

IV, we test our BCs algorithm with semiclassical MC simu-

lations of a nanoscale silicon resistor with large and small

simulation boxes. The excellent agreement between both sets

of simulations �without any fitting parameter� confirms the

merit and accuracy of our BCs algorithm. We also present a

numerical simulation for a �quantum� double barrier RTD to

show the importance of the BCs discussed here. The conclu-

sions are presented in Sec. V. There are two additional ap-

pendixes. First, we summarize the enlightening work of Lan-

dauer and Büttiker about the role of the lead resistances in

the overall charge neutrality. Second, we discuss the limits of

the quasistatic electromagnetic approximation to justify the

exclusive use of a scalar potential in time-dependent sce-

narios.

II. PRELIMINARY ISSUES

The original motivation of this work was the development

of a BCs algorithm with an appropriate treatment of the lead-

sample correlation for a general-purpose many-particle

quantum-trajectory electron-transport simulator, previously

developed by one of the authors.50 From a computational

point of view, such a quantum-trajectory algorithm �with

Coulomb and exchange interactions� can only be imple-

mented in small simulation boxes. Before presenting our al-

gorithm, we develop some preliminary expressions that will

be later used in Sec. III.

A. Time-dependent overall charge neutrality
in nanoscale electron devices

We are interested in developing our BCs algorithm in a

time-dependent framework because of the following two rea-

sons. First, because it will be applicable not only to obtain dc

�zero-frequency� results, but also to ac �high-frequency�
ones. Second, because it is known that the lead-sample cor-

relations are better treated with time-dependent BCs condi-

tions that allow the exchange of energy between the leads

and the sample.

In order to impose a time-dependent condition for the

solutions of the charge density ��r� , t�, the electric field

E� �r� , t�, and the scalar potential V�r� , t�, we start by integrating
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the local continuity equation �i.e., the charge conservation

implicit in Maxwell’s Eq. �B2�� in a large volume �, that

includes the sample, the leads and the reservoirs

�

�t
�

�

��r�,t� · dv + �
S

J�C�r�,t� · ds� = 0. �1�

The volume � is limited by the surface S. We assume that

the particle current J�C�r� , t� in Eq. �1� is parallel to all the

subsurfaces of S, except in those open surfaces17 �r�S�AS in

the source and r�D�AD in the drain reservoirs�, which are

perpendicular to the transport direction

�

�t
�

�

��r�,t� · dv + �
AS

J�C�r�S,t� · ds�S + �
AD

J�C�r�D,t� · ds�D = 0.

�2�

Next, we assume that the current density and the electric

field at the surfaces r�S�AS and r�D�AD, deep inside the res-

ervoirs, are related by the Ohm law51 �no Ohmic assumption

is imposed in this volume ��. Thus

�
AS/D

J�C�r�,t� · ds� = ��
AS/D

E� �r�,t� · ds� �3�

being � the reservoir �frequency-independent� conductivity.

The use of expression �3� imposes an important limitation on

the frequency validity of our BCs algorithm. For example,

the Drude’s deduction of Ohm’s law requires times which are

larger than the inelastic scattering time. We can rewrite Eqs.

�2� and �3� as

�

�t
�

�

��r�,t� · dv + ��ES
C�t� + ED

C�t�� = 0, �4�

where we have defined ES
C�t�=−�AS

E� �r�S , t� ·ds�S and ED
C�t�

=�AD
E� �r�D , t� ·ds�D. See Fig. 1 for the explicit location of ES

C�t�
and ED

C�t�, deep inside the reservoir. The next step is the

integration of the Gauss equation �Eq. �B4� in Appendix B�
in the same volume

�
�

��r�,t� · dv − �
S

D� �r�,t� · ds� = 0, �5�

where D� �r� , t�=��r�� ·E� �r� , t� is the electric displacement field

and ��r�� the �frequency-independent� dielectric constant.

Again, we assume that D� �r� , t� is very small at all surfaces

except at those at the source and drain. Therefore

�
�

��r�,t� · dv − ��ES
C�t� + ED

C�t�� = 0 �6�

with �=��r�d�=��r�s�. Combining expressions �4� and �6�, we

obtain

�

�t
�

�

��r�,t� · dv = −
�

�
�

�

��r�,t� · dv . �7�

Expression �7� provides the time evolution of the total charge

Q�t�=����r� , t� ·dv in the whole system. Its solution is

Q�t� = Q�t0� · exp�−
t − t0

�c

� �8�

with the dielectric relaxation time �sometimes called Max-

well relaxation time� being defined as

�c = �/� . �9�

As expected, the meaning of expression �8� is that the total

charge inside the system tends to zero in periods of time

related to the dielectric relaxation time. Identically, from

Eqs. �4� and �6�, we see that

ES
C�t� − ED

C�t� = �ES
C�t0� − ED

C�t0�� · exp�−
t − t0

�c

� �10�

this meaning that the electric field tends to be the same deep

inside both reservoirs. Finally, we know that the time-

averaged electric field deep inside the reservoir tends to the

Drude value ES/D
drift�t�. Therefore, one possible solution of Eq.

�10� with the additional requirement ES/D
C �t�→ES/D

drift�t� when

t��c is

( )C
SV t

( )C
SE t

( )SV t

( )DV t

( )C
DE t

( )C
DV t

LC LC

Source region Drain region

Reservoir ReservoirLead LeadSample

Numerical
simulationAnalytic 1D solution

( )SE t

( )DE t

( )S t�

( )D t�

Analytic 1D solution

(b) Electric field ( , )E x t

(c) Charge density ( , )x t�

x

x

(a) Scalar potential ( , )V x t�

Lx

p
DL

(d) Doping density ( )DN x

Lx�Lx�N+ N+

N

p
SL

x=0 x=0

x=0 x=0

x=0 x=0

x=0 x=0

FIG. 1. �Color online� Definition of the variables used in the

BCs algorithm and schematic representation of the �a� scalar poten-

tial, �b� electric field, �c� total charge density, and �d� doping den-

sity. An analytical parametric 1D solution is deduced in the �blue�
dashed region while a numerical 3D solution is obtained in the

�yellow� solid central region that we define as the simulation box. A

part �Lx of the highly doping leads is included into the simulation

box in order to account for complex phenomena that can appear at

the interface.
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ES
C�t� − ES

drift�t� = �ES
C�t0� − ES

drift�to�� · exp�−
t − t0

�c

�
�11�

and

ED
drift�t� − ED

C�t� = �ED
drift�t��t0� − ED

C�t0�� · exp�−
t − t0

�c

� .

�12�

When imposing ES
drift�t�=ED

drift�t�, we recover Eq. �10� by

summing Eqs. �11� and �12�. The frequency limitation of

expressions �11� and �12� is ultimately determined by the

assumption that the parameters � and � are constant �time

independent and frequency independent�. Therefore, the di-

electric relaxation time used in expressions �11� and �12�
cannot be shorter than the interval of time needed for making

reasonable the assumption that � and � are constants.

B. Analytical spatial-dependent charge density, electric field,
and scalar potential in the leads

In order to evaluate the total charge in expression �8� or to

apply expressions �11� and �12�, we need to know the charge

densities or the electric fields deep inside the leads. Since we

are interested in not explicitly simulating the leads, we look

for analytical expressions. Nonlinear screening theory is im-

portant but a general analytical solution to the Poisson equa-

tion does not exist. Therefore, we will have to make some

simplifying assumptions. We will use the schemes depicted

in Fig. 1 to explain our analytical solution in the leads and

the assumed simplifications. Throughout this paper, we will

assume a two-terminal device, source and drain, to explain

our BCs algorithm. In any case, it can be straightforwardly

adapted to multiterminal systems with an arbitrary number of

open boundaries.52

First, we assume that all expressions in the leads depend

only on the variable x along the transport direction but are

independent on the lateral directions y and z so that a one-

dimensional �1D� scheme in the leads and reservoirs is ap-

propriate. In order to develop simpler analytical expressions

we consider one specific negative x axis, �−� ,0�, for the

source and another positive, �0,+��, for the drain with dif-

ferent origins. The point x=0 is located at the interface be-

tween the numerical solution in the simulation box and the

analytical solution in the lead �see Fig. 1�. Let us notice that

a small part of the lead is explicitly included into the simu-

lation box �see the length �Lx in Fig. 1�. The exact length

�Lx depends on a trade-off between computational limita-

tions and accuracy to treat complex effects in the interfaces

�such as the presence of quasibound states in the accumula-

tion well53 or the Friedel oscillations54�.
Second, we assume that the electron charge distribution in

the leads can be reasonably described by standard textbook51

expressions and that charge density due to ionized impurities

is uniformly distributed in the leads and reservoirs. There-

fore, we write the Poisson equation as

�

q

�2�Ec�x,t�
�x2

= ��x,t� = qND�1 − exp��Ec�x,t�
kB · �

�� ,

�13�

where ND is the uniform doping density, �Ec�x , t�=Ec�x , t�
−Ec is the offset of the bottom of the conduction band mea-

sured from its average value deep inside the reservoir Ec

=Ec�xS/D , t�, � the absolute temperature, and kB the Boltz-

mann constant. The bottom of the conduction band Ec�x , t�
and the scalar potential are related by Ec�x , t�=−qV�x , t�
�more complex screening theories can also be adapted to our

BCs algorithm as far as they provide analytical solutions

in the leads54,55�. We assume the standard Debye

approximation51 ��Ec�x , t���kB ·� to solve the Poisson Eq.

�13�. Then, under a first-order Taylor expansion, we obtain

��x , t��
qND·�Ec�x,t�

kB·� . Then, the solution of Eq. �13� in the

source lead −LC�x�0 is

��x,t� = �S�t� exp� x + LS
p

l
� , �14�

where we have assumed ��x , t�=0 when x→−� because of

the screening. We have defined �S�t�=��−LS
p , t� as the

�surface-averaged� electron density at x=−LS
p �see Fig. 1�.

We can identify the parameter l as the Debye length51

l =�� · kB · �

q2ND

. �15�

Identically, the solution in the drain lead 0�x�LC is

��x,t� = �D�t� exp�−
x − LD

p

l
� . �16�

For simplicity, we assume equal doping densities and

screening lengths in the drain and source leads. Expressions

�14� and �16� are only valid for small applied bias, i.e., close

to equilibrium conditions. However, large bias can drive the

device far from equilibrium. For such conditions, it is quite

usual that one lead suffers accumulation of electrons while

the other suffers depletion. In the depleted regions, there are

no electrons that can participate on the screening of positive

charge, therefore, the screening length has to be comple-

mented with an additional depletion length. See a schematic

plot in Fig. 1�c�. Then, a reasonable expression for the charge

density at the source is

��x,t� = ��S�t� exp� x + LS
p

l
� − LC � x � − LS

p

�S�t� − LS
p � x � 0,

� �17�

where LS
p is the depletion length of the source lead indicated

in Fig. 1. Identically, the charge density in the drain lead is

��x,t� = ��D�t� exp�−
x − LD

p

l
� LD

p � x � LC

�D�t� 0 � x � LD
p .
� �18�

By applying the gauss Eq. �B4�, from Eq. �17� we can deter-

mine the electric field along the source lead and the source

reservoir
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E�x,t� = �ES
C�t� +

�S�t�l
�

exp� x + LS
p

l
� − LC � x � − LS

p

ES
C�t� +

�S�t��l + LS
p�

�
+

�S�t�x
�

− LS
p � x � 0. �

�19�

We use the field flux ES
C�t� as a boundary condition at

x=−LC that reflects the expected series resistance of the

reservoir. The other term in the right-hand side of Eq. �19�
is due to the nonhomogeneity of the charge distribution in

the lead-sample region. Identically, in the drain lead, we

obtain

E�x,t� = �ED
C�t� −

�D�t�l
�

exp�− x + LD
p

l
� LD

p � x � LC

ED
C�t� −

�D�t��l + LD
p �

�
+

�D�t�x
�

0 � x � LD
p .�

�20�

Finally, the definition of the scalar potential in the source

leads is given by the spatial integration of expression �19� as

V�x,t� = �VS
C�t� − ES

C�t��x + LC� −
�S�t�l2

�
exp� x + LS

p

l
� − LC � x � − LS

p

VS
C�t� − ES

C�t��x + LC� −
�S�t��x + LS

p�2

2 · �
−

�S�t�l�l + LS
p + x�

�
− LS

p � x � 0 � �21�

and integration of Eq. �20� in the drain

V�x,t� = �VD
C�t� + ED

C�t��− x + LC� −
�D�t�l2

�
exp�− x + LD

p

l
� LD

p � x � LC

VD
C�t� + ED

C�t��− x + LC� −
�D�t��− x + LS

p�2

2 · �
−

�D�t�l�l + LS
p − x�

�
0 � x � LD

p .� �22�

Apart from the frequency restrictions mentioned in Sec. II A,

the validity of expressions �17�–�22� is limited to frequencies

lower than the plasma frequency in the leads. In addition,

when large bias conditions are considered, the presence of

hot carriers �with high velocities� in the leads will modify the

�quasiequilibrium� screening length found in Eq. �15�. This

effect will provide a limitation of our BCs model for very

high bias.

C. Electron injection model for a zero-external
impedance system

As discussed above, the previous expressions depend on

the charge density at the source �S�t�=��0, t� and drain

�D�t�=��0, t� borders. Electrons leaving the sample affect

these charge densities but they cannot be controlled. On the

contrary, we can model electrons entering into the simulation

boxes through the injection of electrons from its borders. Let

us discuss how to define such injection of electrons.

A time-dependent degenerate �i.e., taking into account the

Pauli exclusion principle� injection model for electron de-

vices has been presented by one of the authors in Ref. 56

under the assumption that the sample is part of a circuit with

zero-external impedance. In this simplified scenario, the volt-

age drop in the sample can be viewed as a fixed nonfluctu-

ating quantity equal to the external bias. In this section, we

will present a brief summary of such injection model and its

ability to determine either the average value of the current or

its time-dependent fluctuations. Then, in Sec. III, we will

discus how this injection model can be adapted to situations

with arbitrary external impedance.

The rate and randomness of the injection of electrons into

the sample can be modeled through the following binomial

probability P�kx ,N ,�� defined in Ref. 56

P�kx,N,�� =
M�!

N! · �M� − N�!
fS/D�E�N�1 − fS/D�E��M�−N.

�23�

This expression defines the probability that N electrons with

wave vectors in the range kx� �kox ,kox+�kx� are injected

into the sample during the time interval �. The parameter M�

is the number of attempts of injecting electrons during the

previous time interval �, defined as a number that rounds the

quotient � / to to the nearest natural number toward zero. The

number of injected electrons can be N=1,2 , . . . , �M�. The

time t0 is the minimum temporal separation between the in-

jection of two electrons into the particular cell phase-space

cell kx� �kox ,kox+�kx� and x� �xo ,xo+�x�. For a 1D sys-

tem, the value of t0 can be easily estimated. The number of

electrons n1D in the particular phase space cell �kx ·�x is

n1D=2·�kx ·�x / �2�� where we consider a factor 2 for spin

degeneracy.57 These electrons have been injected into �x

during the time interval �t defined as the time needed for

electrons with velocity vx=�x /�t=�kx /mt to travel a dis-

tance �x. Therefore, the minimum temporal separation, t0,
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between the injection of two electrons into the previous par-

ticular cell is �t divided by the maximum number n1D of

electrons

t0�kx��1D =
�t

n1D

= � 1

�

�kx

mt

�kx�−1

. �24A�

The practical application of such definition of t0 requires a

mesh with a small step �kx on all possible values of kx.

Identically, for a 2D and 3D system, we obtain

t0�y,kx,ky��2D =
�t

n2D

= � 1

2�2

�kx

mt

�y�kx�ky�−1

, �24B�

t0�y,z,kx,ky,kz��3D =
�t

n3D

= � 1

4�3

�kx

mt

�y�z�kx�ky�kz�−1

.

�24C�

On the other hand, the function fS�E� that appears in Eq. �23�
determines the probability that a state with kinetic energy E

measured from the bottom of the conduction band −qVS�t� is

occupied by an electron that will effectively enter into the

simulation box. In particular, we assume that such probabil-

ity is determined by half of the Fermi distribution �E
=E�k�� with kx�0,� as:

fS�E� =
1

1 + exp�E − FS
inj�t� + qVS�t�

kB · �
� �25�

where the electron wave vector k� is related to the kinetic

energy by the appropriate energy-dispersion relationship

E�k��. The term FS
inj�t� is defined here as the source injecting

energy level and it determines how to increase the rate of

injection of electrons while respecting the Pauli restriction.

This restriction implies that two electrons with identical ve-

locity have to be injected with a temporal separation equal or

larger than t0. We avoid the name electrochemical potential

for such energy FS
inj�t� because Eq. �25� does not refer to all

�source� electrons but only to those with kx�0. In addition,

close to the active region, the electron distribution for kx

�0 will be quite unpredictable �see insets in Fig. 18 in Ap-

pendix A�. We reserve the name electrochemical potential to

the thermalized energy distribution deep inside the reser-

voirs, at x= �LC. Here, FS
inj�t� is just a parameter that con-

trols the rate of injection of electrons at the border of the

simulation box to ensure overall charge neutrality. Equiva-

lently, the electrons injected from the drain have an energy

distribution determined by �E=E�k�� with kx�0� as:

f0�E� =
1

1 + exp�E − FD
inj�t� + qVD�t�

kB · �
� �26�

with FD
inj�t� the drain injecting energy level. We will later use

the parameters FS
inj�t� and FD

inj�t� to indirectly increase/

decrease the charge density �S/D�t� at the lead-sample inter-

face, at each time step of the simulation.

It is very instructive to understand the Binomial distribu-

tion of the injection process, expression �23�, as a conse-

quence of the discreteness of the electron charge. For a par-

ticular cell, at zero temperature, we inject an electron every

interval of time t0. The average current per cell is −q / to. At

room temperature, the average current is lower, −q · f�E� / to,

because of the uncertainty in the occupation. However, it is

not possible to inject a fractional charge −qf�E� into the

system at each interval of time t0 �i.e., the electron charge is

indivisible�. Therefore, at each interval of time t0, either we

inject the full charge, −q �if the state is occupied�, or we do

not inject charge �if the state is empty� according to the prob-

ability f�E�.
As a simple test of our injection model in zero-external

impedance circuits, we compute analytically the current and

its fluctuations �i.e., the noise� for a one-subband ballistic 1D

system. According to the zero-external impedance, we as-

sume that VS�t� and VD�t� in Eqs. �25� and �26� are fixed by

the time-independent external bias. We assume a transmit-

tance equal to unity. For such conditions, all injected elec-

trons are finally transmitted �i.e., injection probability and

the transmitting probability are identical� and there are well-

known analytical results in the literature for both, average

current and noise.1,58,59

The average current �I� is an experimental measure of the

charged transmitted through the system during a long time

interval. For our ballistic system, the charge transmitted

through the source is just the charge injected. Therefore

�I� = − lim�→� q�
kx

EN��,kx�
�

. �27�

The average number EN�� ,kx� of injected particles during

the time interval � is computed from the probability

P�kx ,N ,��

EN��,kx� = �
N=0

N=�

P�kx,N,��N . �28�

As we mentioned before, we divide the whole phase space

into cells with a small �kx so that all electrons in the cell

have roughly the same energy. The average number of in-

jected particles with wave vector kx during the time � can be

computed from Eq. �28� as EN�� ,kx�= fS�E� ·� / to�kx� for each

cell of the source injection. Previous expression is just the

mean value of the Binomial distribution in Eq. �23�, where

fS�E� is defined by expression �25�. From Eq. �27�, the aver-

age current of each kx-phase space cell can be computed as

�I�kx =−qfS�E� / to�kx�. The sum over all phase-space cells

with kx�0, �I�=�kx
�I�kx, does exactly reproduce the Land-

auer average current. The drain current is computed equiva-

lently. The total current is the source component minus the

drain component
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�I� = −
2q

h
�

0

�

�fS�E� − fD�E��dE , �29�

where we have used dE��2kx ·�kx /mt and 1 / t0�kx�
=�kx ·dkx / �� ·mt�. This is just expressions �39� and �40� of

Ref. 1 for a transmission coefficient equal to one. For low

temperature �i.e., f�E�=1 for all injected electrons�, we ob-

tain the well-known Landauer conductance G=2q2 /h.

For ballistic devices, the one-side power spectral density

of the current fluctuations at zero �low� frequency can be also

obtained from probability in Eq. �23� as

SI�0� = lim�→�2q2�
kx

EN2��,kx� − �EN��,kx��2

�
, �30�

where we defined EN2�� ,kx� as

EN2��,kx� = �
N=0

N=�

P�kx,N,��N2. �31�

For the binomial distribution of expression �23�, we obtain

EN2�� ,kx�− �EN�� ,kx��2= fS�E��1− fS�E�� ·� / to�kx�. Then, us-

ing Eq. �30�, we found SI
kx�0�=2q2fS�E��1− fS�E�� / to�kx� for

the source injection. Identical results are obtained for the

drain injection. Since there is no drain-source correlation in

our simple ballistic model, the total power is the sum of both.

After integration over all energies, we obtain

SI�0� =
4q2

h
�

0

�

�fS�E��1 − fS�E�� + fD�E��1 − fD�E���dE .

�32�

This expression does exactly reproduce Büttiker results for a

system with transmission coefficient equal to one �see ex-

pression �61� in Ref. 58�. Expression �32� includes the ther-

mal and the shot noise �i.e., it is valid both at equilibrium and

far from equilibrium�. Under equilibrium conditions, the

previous result reproduces the Nyquist-Johnson thermal

noise, as can be shown by introducing the identity

−kB� ·�f�E� /�E= f�E��1− f�E�� into the previous result.

In conclusion, the �time-dependent� injection model dis-

cussed here correctly accounts for the Pauli correlations

among electrons when the active region is part of a circuit

with zero-external impedance. In this case, the voltages ap-

plied to the sample can be viewed as a fixed nonfluctuating

quantity and the noise properties are determined only by the

Pauli correlations discussed above. In addition, when the

sample is a part of a larger circuit �with nonzero-external

impedances�, the current fluctuations in the sample imply

voltage fluctuations in the leads �through the time depen-

dence of VS�t� and VD�t� in Eqs. �25� and �26�� that, in turn,

imply fluctuations on the injecting probabilities into the

sample �through expression �23�� and on the current in the

sample �see expression �63� in Ref. 1�. These complicated

correlations between sample and leads highlight the impor-

tance of the BCs algorithm mentioned here.

III. TIME-DEPENDENT BOUNDARY-CONDITIONS AT
THE BORDERS OF THE SAMPLE FOR OVERALL

CHARGE NEUTRALITY

A. General consideration

According to Fig. 1, we have to specify the values VS�t�
and VD�t� for the “border_potential_BCs,” and �S�t� and

�D�t� for the “border_charge_BCs.” In addition, in Sec. II B,

we have derived analytical relationships between scalar po-

tentials, electric fields, and charge densities at the borders of

the simulation box, at x=0, and those values deep inside the

reservoirs, at x= �LC. We have to add the four additional

unknowns VS
C�t�, VD

C�t�, ED
C�t�, and ES

C�t�. In total, for two-

terminal models, we have eight unknowns. Hence, we need

eight conditions to specify the BCs.

As we have explained in the introduction, and it will be

numerically confirmed in Sec. IV, it is very difficult to pro-

vide an educated guess of the scalar potential, the electric

field or the charge density at the borders of a small simula-

tion box where leads are excluded. In addition, the electro-

chemical potential for thermal distributions becomes an ill-

defined parameter for small simulation boxes. One can

assume a well-known value of the electrochemical potential

deep inside the reservoir. However, close to the active re-

gion, where the �far from equilibrium� momentum distribu-

tion can be quite arbitrary, the prediction of any value of the

electrochemical potential for injected and reflected electrons

is quite inappropriate.

Fortunately, the analytical results of Sec. II for the leads

and reservoirs can be used to transfer the unknown “border-

_potential_BCs” and “border_charge_BCs” at the borders

of the simulation box into simpler BCs deep inside the res-

ervoirs. This is the key point of our BCs algorithm.

In particular, the two new BCs that we will impose at

x= �LC are:

(i) “Deep_drift_BCs.” We assume that the inelastic scat-

tering mechanisms at, both, the source x�−LC and the drain

x�LC reservoirs provides a quasiequilibrium position-

independent thermal distribution of electrons �it is implicitly

assumed that the contact length LC is large enough so that

inelastic scattering is relevant there�. Such position-

independent electron distribution is consistent with charge

neutrality deduced in expressions �17� and �18�, deep inside

the reservoir, that implies a uniform electric field there. Then,

according to the Ohm’s law mentioned in expression �3�, we

known that the electric fields tend to ES/D
C �t�→ES/D

drift�t� at the

source and drain reservoir.

(ii) “Deep_potential_BCs.” We assume that electrochemi-

cal potentials can be defined for the position-independent

thermal distribution deep inside both reservoirs. We known

that the applied bias coincides with the energy separation of

the electrochemical potentials between the source and drain

reservoirs. In addition, due to the position-independent elec-

tron distribution deep inside the reservoirs, we assume that

the energy separation between the electrochemical potential

and the bottom of the conduction band is perfectly known in

the drain and source reservoirs. When equal doping is used

in both contacts �as done in the numerical examples of this

work�, the energy separation between the bottoms of the
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conduction bands at both reservoirs is equal to the difference

of the external voltages. Hence, VS
C�t�=0 and VD

C�t�
=Vexternal�t�.

These two conditions, “deep_drift_BCs” and “deep_po-

tential_BCs” are quite reasonable for any electron device

deep inside the reservoirs. In fact, we will show in Sec. III B

that the numerical MC solution of the nonequilibrium Bolt-

zmann equation in a large simulation box confirms the ad-

equacy of these conditions in the reservoirs. Therefore, from

the initial eight unknowns, we have the “deep_drift_BCs”

and “deep_potential_BCs” considerations that provide four

conditions �two for each border�. However, we do still need

four additional conditions in order to completely specify our

BCs unknowns. Such conditions come from imposing, at the

borders of the simulation box, the continuity between the

analytical expression of the electric field �and the scalar po-

tential� in the leads and the numerical values obtained inside

the simulation box. Therefore, we will be able to determine

the initial unknowns VS�t�, VD�t�, �S�t�, and �D�t� in the bor-

ders of the simulation box, by imposing four conditions deep

inside the reservoir and imposing continuous profiles. The

value of the ES/D
drift�t� is not a parameter because it is imposed

by the conduction current, via the Ohm’s law. As discussed

in Sec. II A, imposing equal electric fields deep inside the

reservoirs guaranties the overall-charge-neutrality require-

ment.

Finally, we have to comment on the time dependence of

our algorithm. On one hand, most of the expressions devel-

oped in Sec. II have some frequency restrictions. In Appen-

dix B, we have also discussed the frequency limitations re-

lated to assuming that only the scalar potential is necessary

to describe time-dependent nanoscale scenarios. Our BCs al-

gorithm is valid for frequencies lower or equal than the

lowest-frequency restriction mentioned above. We will refer

to such frequency limit as the, fqs, which will be considered

in next section.

B. Practical implementation of the boundary conditions
in classical or quantum time-dependent simulators

In Fig. 2, we represent schematically the flux diagram of

the BCs algorithm presented in this paper. After initializing

all variables and functions to predetermined values and mov-

ing particles �or solving wave-equation time evolution�, we

arrive at the specific BCs algorithm. We know the old values

of VS�t�, VD�t�, �S�t�, and �D�t� at time t. The BCs algorithm

will provide their new values at time t= t+�t. We have di-

vided the algorithm into five different steps that we will de-

scribe in detail below:

Step-(1) evaluation of the charge density at the sample

(inside) boundary. The first step is the evaluation of the

charge density at the boundaries of the sample at time t. This

will be computed in the spatial cell closer to the border but

still inside the simulation box �see �Lx in Fig. 1�. Since we

describe a one-dimensional version of the BCs algorithm, we

will need a surface integration of such magnitudes that we

refer to as the instantaneous charge densities �S/D
ins �t��. As

mentioned before, due to frequency restrictions of the algo-

rithm, what we will finally compute is a running average

�S/D�t� =
1

Tqs
· �

t−Tqs

t

�S/D
ins �t�� · dt� �33�

with the temporal interval Tqs equal to the integer Nqs mul-

tiplied by the simulation time step, Tqs=Nqs ·�t�1 / fqs. Let

us notice that we just calculate the charge density at time t,

not at time t+�t.

Step �2�—imposing continuity of the electric field and the

scalar potential at the sample-lead interface by means of a

Newton-Raphson method. As mentioned in the previous sec-

tion, the electric field and the scalar potential have to be

continuous at both lead-sample interfaces. In one hand, the

electric field, at the x=0 and the electric field at x=−LC, of

the source lead, are related from expression �19� as

ES
C�t + �t� = ES�t + �t� −

�S�t��l + LS
p�t��

�
, �34�

where we have defined ES�t+�t�=E�0, t+�t�. Here, we as-

sume �S/D�t+�t���S/D�t� and LS/D
p �t+�t��LS/D

p �t�. We will

later relax these assumptions. Identically, from Eq. �20�, we

define in the drain

FIG. 2. �Color online� Schematic representation of our �time-

dependent� BCs algorithm coupled to a particle-based electron

�classic and quantum� transport simulator.
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ED
C�t + �t� = ED�t + �t� +

�D�t��l + LD
p �t��

�
. �35�

In addition, from Eq. �21�, we obtain

VS�t + �t� = VS
C�t + �t� − ES

C�t + �t�LC

−
�S�t��l + LS

p�t��2

2�
−

�S�t�l2

2�
�36�

and from Eq. �22�

VD�t + �t� = VD
C�t + �t� + ED

C�t + �t�LC

−
�D�t��l + LD

p �t��2

2�
−

�D�t�l2

2�
. �37�

As mentioned before, we fix the value VS
C�t+�t�=0 and

VD
C�t+�t�=Vexternal�t+�t�. We also know the charge density

�S�t� and �D�t� from “step 1.” We will use ES
C�t+�t� and

ED
C�t+�t� to find the continuous solution of the electric field

according to the procedure explained in the next paragraph.

Later, in “step 4,” we will relate the new parameters of

ES
C�t+�t� and ED

C�t+�t� to new values of �S�t+�t� and

�D�t+�t�.
We will follow a Newton-Raphson method to find the best

parameters ES
C�t+�t� and ED

C�t+�t� that provide continuity

of the electric field at the borders of the simulation box. We

use expressions �34� and �35� to determine ES�t+�t� and

ED�t+�t�, and Eqs. �36� and �37� for VS�t+�t� and VD�t
+�t�. Then, we apply these new voltages on the source and

drain surfaces of the 3D simulation box and solve the 3D

Poisson equation there. Next, we compute the electric field at

the spatial step closer to the borders but still inside the 3D

simulation box. We made a surface integral to transform the

electric field in the surface of the simulation box into a 1D

parameter. In order to obtain a continuous shape of the elec-

tric field in the whole system we repeat the previous se-

quence by slightly modifying the values of ES
C�t+�t���E

and/or ED
C�t+�t���E until we find new values VS�t+�t� in

Eq. �36� and VD�t+�t� in Eq. �37� so that the analytical and

numerical electric fields at the borders of the simulation

boxes coincide. Such a loop will provide a continuous

analytical-numerical coupling for the electric field and, as a

consequence, will also assure the continuity of the scalar

potential. In summary, in this step 2, we determine the new

values VS�t+�t� and VD�t+�t�.
Step-(3) calculation of the drift electric field at x= �LC.

The JS/D
drift�t� is computed inside the sample from the number

of electrons crossing the source �or drain� surfaces. In addi-

tion, the value Jdrift�t� is time averaged as described in ex-

pression �33�.

JS/D
drift�t� =

1

Tbc
· �

t−Tbc

t

JS/D
drift_ins�t��dt�, �38�

where JS/D
drift_ins�t�� is the value computed at each time step.

Finally, from the Ohm’s law of expression �3� we will com-

pute the average drift electric fields deep inside the reservoirs

at x= �LC. Let us notice that we just calculate the drift elec-

tric field at time t, not at t+�t.

Step 4—modification of the injecting energy levels and

the depletion lengths. In step 2 we have already computed

ES
C�t+�t� and ED

C�t+�t� as fitting parameters instead of

�S�t+�t� and �D�t+�t�. In this step, we will relate the modi-

fication of the electric fields deep inside the reservoir to the

charge density at the borders of the simulation box. This

two-step procedure is justified because we deal with a very

small time step, which implies very small variations of all

these parameters. From Eqs. �11� and �19�, we can state a

direct relationship that gives the value of the charge density

required at the borders of the active region in the next time

step

�S�t + �t� = �S�t� + �ES
C�t� − ES

drift�t��
� · �T

�l + LS
p�t�� · �c

�39�

and from Eqs. �12� and �20�

�D�t + �t� = �D�t� − �ED
C�t� − ES

drift�t��
� · �T

�l + LD
p �t�� · �c

.

�40�

We have assumed the following simplification,

exp�−�t− t0� /�c��1−�t /�c with �t= t− t0 which is much

smaller than �c, in expressions �11� and �12�. Since we are

only interested on relating ES/D
C �t� with �S/D�t+�t�, we have

assumed that ES/D�t� and LS/D
p �t� in expressions �19� and �20�

does not change with time.

Although Eqs. �39� and �40� together with the values

�S�t� and �D�t� clearly define �S�t+�t� and �D�t+�t�, we do

not have a complete control on how to increase/decrease

these values in our simulator. On the contrary, we only have

the possibility of increasing/decreasing the injecting prob-

ability in Eq. �23� through the parameters FS
inj�t+�t� and

FD
inj�t+�t� that appear in Eqs. �25� and �26�. The exact rela-

tionship between the displacement of the injecting energy

levels and the variation in the injected charge density in the

simulation box boundaries is not trivial. We perform a pre-

processing computation of the function �inj�FS,D
inj +qVS,D� ac-

cording to the injection model described in Sec. II C. Once

such a relation has been established, we can determine ex-

actly in which way the injecting energy levels have to be

displaced.

As mentioned several times along this paper, there is a

particular scenario that cannot be managed just by modifying

the injecting energy levels. Far from equilibrium, at high

applied bias, we can accumulate electrons as much as needed

to decrease �S�t� in order to achieve overall charge neutrality.

However, we cannot deplete electrons as much as possible in

the sample-lead interface. Once we arrive at zero injected

electrons, we cannot decree this number any more. In such

situations, the only way to decrease the negative charge is to

enlarge the depleted �positive charge� region in the drain �see

Fig. 1�c��. The same depletion procedure could be needed

in the source for a negative bias. From Eqs. �11� and �19�, if

we consider �S�t� fixed but LS
p�t� variable, we obtain in the

source
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LS
p�t + �t� = LS

p�t� + �ES
C�t� − ES

drift�t��
� · �t

�S�t� · �c

�41�

and, identically from Eqs. �12� and �20�, we obtain in the

drain

LD
p �t + �t� = LD

p �t� − �ED
C�t� − ED

drift�t��
� · �t

�D�t� · �c

. �42�

At this point, we have determined the evolution of the injec-

tion energy levels FS/D
inj �t+�t� and the depletion lengths

LS/D
p �t+�t�.

Step 5-electron injection. Finally, according to the new

values of the scalar potential VS/D�t+�t� �step 2� and the

injecting energy levels FS/D
inj �t+�t� �step 4� at the boundaries

of the simulation box, a new injecting process is performed

according to expressions developed in Sec. II C. This is the

last step of the BCs algorithm before the simulator can go

back to moving the particles �and waves� as shown in the

flux diagram of Fig. 2.

These five steps of the BCs algorithm are repeated for

each time step. The time step is so small, �t� fs, so that

very small variations in all magnitudes are obtained. In turn,

these very small variations justify the approximations devel-

oped in the procedure explained above.

IV. NUMERICAL RESULTS

Now, we report the numerical results obtained by apply-

ing the previous BCs to classical and quantum �time-

dependent� electron-transport simulators. All simulations are

carried out at room temperature.

A. Testing of our boundary condition algorithm: Comparison
between large and small simulation boxes

In this section, we consider the N+NN+ resistor depicted in

Fig. 3 with two different simulation boxes. First, a large

simulation box �LB�, Lx�LB�=42 nm, that includes the

leads and reservoirs �N+ region� plus the sample �N region�.
Second, a smaller simulation box �SB�, Lx�SB�=8 nm, that

only includes the sample �N region� plus a small part,

�Lx�SB�, of the leads. See Fig. 3 and Table I. We will use the

semiclassical MC simulator60 of Ref. 30 that provides a de-

tailed treatment of the Coulomb correlations among electrons

inside the device. The use of the smaller simulation box cer-

tainly implies a considerable reduction in the computational

burden. In particular, while the computational times related

with the LB simulations imply approximately 1 day per bias

point in our computing tools because of the large number of

particles simulated, its simulation with the SB decreases

down to only 3 h.

Before comparing the SB and LB results, let us mention

some details common to both sets of MC simulations.60 We

assume an effective-mass approximation.61,62 Electron trans-

port in the “x” direction �from source to drain� takes place

along a silicon �100� orientation channel, at room tempera-

ture. In particular, the electron mass is taken according to the

six equivalent ellipsoidal constant energy valleys of the sili-

con band structure.63,64 The effective masses of the ellipsoids

are ml
�=0.9163m0 and mt

�=0.1905m0 with m0 the free elec-

tron mass. Finally, all simulations use a 3D finite-difference

Poisson solver. Hence, the volumes �SB �for the small box

simulations� and �LB �for the large box simulations� are di-

vided into cells of spatial dimensions �X=1 nm, �Y

=60 nm, and �Z=60 nm. See Table I for more details.

In Fig. 4, we have plotted �in dashed lines� the �time-

averaged� self-consistent scalar potential for the LB. The re-

sults are obtained by applying our BCs algorithm explained

in Sec. III for the large simulation box. In particular, we have

used Lc�LB�=3 nm so that, according to Fig. 1, the total

length of the resistor is 2Lc�LB�+Lx�LB�=48 nm. Interest-

ingly, the simulations reproduce a net charge equal to zero

deep inside the reservoirs �see dashed line in Fig. 5� and a

small uniform electric field proportional to the current,

i.e., the drift value. The deep region of the reservoir can

be modeled by a simpler series resistance confirming that

our BCs algorithm can be perfectly used in large simulation

boxes that include the leads. Then, our model provides the

voltage drop due to a simpler �reservoir� series resistance.

Another relevant issue of these LB results is that they pro-

vide a numerical justification of our “deep_drift_BCs” that

N+

N+ z

y
xDrain

Lz

Ly

Lx(LB)

Source N

Lx(SB)
LC(SB)

LC(LB)

FIG. 3. �Color online� Schematic representation of the N+NN+

structure.

TABLE I. Parameters for the N+NN+ structure depicted on

Fig. 3.

Units Symbol Value

Lengths �nm� Lx�LB� 42

Lx�SB� 8

Ly 60

Lz 60

LC�LB� 3

LC�SB� 20

Spatial step �nm� �x 1

�y 60

�z 60

Relative permittivity Air 1.0005

Silicon 11.7514

Dielectric relaxation time �sec.� �c 1�10−13

Silicon conductivity �� m�−1 � 2.5�105

Screening length �nm� l 0.95

Doping �cm−3� Channel N Intrinsic

Contact N+ 2�1019

Simulation time �sec.� T 2�10−10

Temporal step �sec.� �t 2�10−16
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we impose on our BCs algorithm deep inside the reservoir,

i.e., ES/D
C �t�→ES/D

drift�t�.
In Fig. 4, we have also plotted �in solid line� the �time-

averaged� self-consistent scalar potential profiles obtained

for the SB. In particular, we have used Lc�SB�=20 nm so

that, according to Fig. 1, the total length of the resistor in this

second set of simulations, 2Lc�SB�+Lx�SB�=48 nm, is

identical to the first one. The agreement between both sets of

simulations is excellent, even for large external bias. This

highlights the accuracy of our BCs algorithm for simulation

boxes of few nanometers and its ability for incorporating the

Coulomb correlations among the electrons inside the sample

�N region� and those located in the leads �N+ region�.
Figure 5 shows the charge density distribution along the

N+NN+ structure for both sets of simulations. The agreement

among the LB and SB curves is quite acceptable. Let us

notice that charge density is the second derivative of the

scalar potential distribution, and hence, the imperceptible

discrepancies encountered in Fig. 4 are now magnified. The

depletion region in the drain for large bias merits some spe-

cial attention. An exponential shape describes reasonably

well the charge density in the source lead, however, due to

the formation of a depletion region in the drain side, the

charge there does not tend to zero within the five Debye

lengths ��5l�. Due to the important voltage drop there, elec-

trons coming from the drain reservoir are not able to reach

the sample-lead interface and, therefore, they cannot screen

the positive doping charge and a depletion region appears.

The ability of dealing with depletion regions appearing in far

from equilibrium scenarios represents an important landmark

of our model.

There is an interesting explanation for the slight differ-

ences between the charge density in the LB and SB results.

The semiclassical MC method60 used in both sets of simula-

tions only takes into account the Pauli exclusion principle in

the electron injection process as described in Sec. II C. For

example, in the source, it will not be possible to inject two

electrons with identical positive velocity �wave vector� si-

multaneously. Our injecting process waits, at least, an inter-

val of time t0 before sending the second identical electron.

However, once the electrons are inside the simulation box,

the semiclassical MC technique does not impose any Pauli

restriction on their dynamics so that, after a large enough

time from their injection, two electrons can occupy the same

position with the same velocity. In this sense, the momentum

distribution at the boundaries �close to the active region� will

be different when large or small simulation boxes are con-

sidered. When using small simulation boxes, the addition of

electrons into the active region implies an increase in its

energy because lower states are already occupied �i.e., the

quantum capacitance�. On the contrary, when using a large

simulation box, the addition of electrons into the active re-

gion can come from identical energies. Interestingly, we can

argue that �in the MC simulations� the small simulation box

provides a better electron momentum close to the sample

than that obtained with a large simulation box. The slight

differences appearing in Fig. 5 might partially be explained

by this effect.

Finally, Fig. 6 shows the contact plus lead pseudoresis-

tances as a function of bias. They are defined directly as the

voltage drop in the lead region divided by the �average� cur-

rent flowing through the whole structure. From our defini-

tion, a negative value of the source resistance means that the

potential energy deep inside the reservoir is lower than that

FIG. 4. �Color online� Potential-energy profile computed with

our BCs algorithm for a large simulation box �dashed line� and for

a small simulation box �solid lines�.

FIG. 5. �Color online� Charge-density profile computed with our

BCs algorithm from a large simulation box �dashed line� and from

a small simulation box �solid lines�.

FIG. 6. Pseudoresistance of the reservoir plus lead computed

from our BCs algorithm with a large simulation box �dashed lines�
and with a small simulation box �solid lines�.
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at the lead-sample interface �see, for example, the 0.0 V

potential profile in Fig. 4�. Obviously, the total �reservoir,

leads plus sample� resistance in the whole electron device

will be positive. We use the word “pseudo” to emphasize that

such resistances cannot be directly associated to energy dis-

sipation. As it can be observed, although the contact series

resistances �related to the drift electric field deep inside the

reservoir� are constant, the bias dependence of the resistance

in the lead is far from trivial because it takes into account the

complex electrostatic coupling of the leads and the sample

described by expressions �36� and �37�. This result shows

that a constant resistance cannot account accurately for the

Coulomb correlations between electrons in the active region

and those in the leads.

In conclusion, in this section we have shown that our BCs

provides an excellent description of the coulomb coupling

between the sample and the leads. The �reservoir plus lead�
resistance obtained from a LB simulation box is practically

identical to that obtained from a SB simulation. The com-

parison of the current-voltage characteristic will be discussed

in next section. Let us emphasize that our BCs algorithm is a

parameter free algorithm. Only the external bias is necessary.

Even the electric drift field is obtained from the numerical

computation of the average conduction current. In next sec-

tion, we show numerically the enormous difficulties that the

standard BCs, applied to small simulation boxes that exclude

the leads, have when trying to reproduce the previous set of

results obtained with our algorithm.

B. Limitations of standard boundary condition algorithms
for (small) simulation boxes that exclude the leads

In the present section, we simulate the same N+NN+ struc-

ture with the same MC technique and the same small simu-

lation box �that excludes the leads� considered in the previ-

ous section. The only difference will be the consideration of

two different BCs algorithms.

The first type of BCs, that we named Dirichlet external

bias, uses the external bias as the BCs for the Poisson equa-

tion �“border_potential_BCs”� and the injection model de-

scribed in Sec. II C with a fixed FS/D
inj �t� equal to the equilib-

rium electrochemical value �“border_charge_BCs”�. Since

such Dirichlet BCs consider zero-external impedance so that

it can only be acceptable for large simulation boxes. Here,

we explicitly demonstrate its limitations for small simulation

boxes.

The second type of BCs, that we named local charge

neutrality, is based on ensuring that the total charge is zero at

the borders �“border_charge_BCs”�. The local charge neu-

trality is achieved by moving the bottom of the conduction

�border_scalar_BCs�, while fixing FS/D
inj �t� equal to the equi-

librium electrochemical value, to increase/decrease the

charge at the border. This second type can be used in simu-

lation boxes slightly smaller than the ones required by the

previous BCs algorithm. In any case, although the assump-

tion of local charge neutrality inside the leads �i.e., a few

Debye lengths away from the lead-sample interface� is cor-

rect, it is not valid close to the active region as shown below.

The LB results depicted in Figs. 7–10 are the ones ob-

tained in the previous subsection. The first type of BCs, the

Dirichlet external bias implies a very restrictive constriction

FIG. 7. �Color online� Scalar potential-energy profile computed

in the large simulation box with our BCs algorithm �dashed lines�
and that corresponding to the implementation of the Dirichlet ex-

ternal bias BCs in the small simulation box �solid lines�.

FIG. 8. �Color online� Charge-density profile computed in the

large simulation box with our BCs algorithm �dashed lines� and that

corresponding to the implementation of the Dirichlet external bias

BCs in the small simulation box �solid lines�.

FIG. 9. �Color online� Scalar potential-energy profile computed

in the large simulation box with our BCs algorithm �dashed lines�
and that corresponding to the implementation of the local charge

neutrality BCs model in the small simulation box �solid lines�.
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that neglects any correlation among the electrons inside and

outside the active region. The scalar potential at the borders

does not depend on the charge �accumulated or depleted� in

the leads. As seen in Figs. 7 and 8, these limitations are

obviously translated into a bad description of the conduction

band and the charge density.

The second type of BCs in small simulation boxes, local

charge neutrality, is plotted in Figs. 9 and 10. It cannot prop-

erly describe the �accumulated or depleted� charge at the

N+-N and N-N+ interfaces. The charge density at those inter-

faces is always zero with these BCs �see Fig. 10�. The con-

dition of charge neutrality is reasonable deep inside the

leads, but not close to the sample, where the excess/deficit of

charge has not yet been screened. This second type of BCs is

unable to properly describe the bottom of the conduction

band depicted in Fig. 9.

The ultimate reason why none of the two previous BCs

types are able to produce reasonable results is because they

do not achieve the overall-charge-neutrality requirement dis-

cussed in the introduction. In Fig. 11, we demonstrate that a

nonaccurate description of the lead-sample Coulomb corre-

lations cannot provides an accurate description of the �lead

plus reservoir� pseudoresistance. The first type of BCs, Di-

richlet external bias, gives a trivial and incorrect zero resis-

tance. The second type, local charge neutrality, accounts for

a nonlinear dependence of the resistances on the applied

voltage that assumes some kind of electrostatic correlations

between sample and leads. However, Fig. 11 shows that such

correlations are clearly unphysical when small simulation

boxes are considered.

Finally, in Fig. 12, we plot the characteristic current-

voltage curves for the large and small simulation boxes com-

puted by means of our BCs algorithm and those computed

through the Dirichlet external bias and the local charge neu-

trality algorithms with small boxes. For very small voltages

�close to equilibrium�, all BCs gives similar results. How-

ever, for large voltages �far from equilibrium�, the discrep-

ancies among the different models are more than notable.

The Dirichlet external bias �open triangles� fixes not only

the potential at the borders of the simulation box but also the

electrochemical potentials there. This means that the injec-

tion of electrons in each side is independent of the rest of the

system �and neglects the Coulomb correlations between elec-

trons in the sample and the leads�. Therefore, when the ap-

plied bias is enough to avoid that electrons coming from the

drain contact reach the source, the current saturates. The lo-

cal charge neutrality �open diamonds� wants to preserve

charge neutrality, locally, in the lead border. As we increase

the voltage, in the source border, the number of electrons

reflected by the sample �with negative momentum� tends to

decrease because most of source electrons are finally trans-

mitted. In addition, the mean velocity of the carriers tends to

increase in the active region implying a reduction in negative

charge in the sample �while the positive charge remains con-

stant�. Therefore, when we increase the voltage, the source

electron density at the source border tends to decrease and,

consequently, the injection rate must increase to ensure local

charge neutrality in the source border. This explains why the

current saturates at a much larger voltage �not plotted in Fig.

12� than that obtained for the Dirichlet external voltage. A

FIG. 11. �Color online� Pseudoresistance of the reservoir plus

lead computed from our BCs model for the large simulation box

�dashed lines� and from the Dirichlet external bias and local charge

neutrality for the small simulation box �symbols�.

FIG. 10. �Color online� Charge-density profile computed in the

large simulation box with our BCs algorithm �dashed lines� and

with the local charge neutrality BCs model in the small simulation

box �solid lines�.

FIG. 12. �Color online� Current-voltage characteristics for the

N+NN+ structure. The solid line corresponds to our BCs algorithm

applied in the small box region. Open triangles correspond to Di-

richlet external bias and open diamonds to local charge neutrality

BCs. In dotted line we have plotted the I-V characteristic correspon-

dent to our BCs applied in the large box including the leads.
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similar explanation can be applied to understand the current-

voltage obtained with our BCs model for a SB �solid lines�.
Again, the solution to obtain overall charge neutrality is to

incorporate more and more electrons from the source but at

slower rate. Certainly, our BCs model with a small box �solid

line� is the one that provides currents closer to the LB results

�dashed lines�.
The small differences between the two curves obtained

with our BCs for small and large boxes can be explained

with the same arguments used to explain the differences in

the charge density of Fig. 5. The MC method60 used in both

sets of simulations only takes into account the Pauli exclu-

sion principle in the electron injection process at the bound-

aries of the simulation box, as described in Sec. II C. How-

ever, once the electrons are inside the simulation box, the

semiclassical MC technique does not impose any �Pauli� re-

striction on their dynamics. When using small simulation

boxes, the addition of electrons at the borders of the active

region implies an increase in their �kinetic� energy because

lower states are already occupied �this is not true for the LB

because the injection is far from the borders of the active

region�. This means that the average velocity in the borders

is slightly higher with the small simulation box than with the

large one. Hence, as depicted in Fig. 12, the current com-

puted with the SB is slightly higher than the LB current.

C. Application of our boundary condition algorithm for
(time-dependent) quantum electron transport simulators

In this section, we provide an example of the implemen-

tation of our BCs algorithm into a time-dependent quantum

simulator, where the need for small simulation boxes is still a

more relevant computational requirement. In fact, it is not

strange to find in the literature, atomistic structures with

simulation boxes of few tens of Angstrom.14,15,45 In order to

emphasize the relevance of taking into account the Coulomb

correlations among the active region and the leads, we will

compare the results obtained with our BCs model and those

obtained through standard Dirichlet external bias at the bor-

ders of the simulation box. Contrarily to Sec. IV A, no com-

parison with a large simulation box �including the leads and

reservoirs� is done because such simulation would be com-

putationally inaccessible. This computational difficulty was,

precisely, the initial motivation for this work.

As described in Fig. 13 and Table II, we consider an RTD

consisting on two highly doped drain-source GaAs regions

�the leads�, two AlGaAs barriers, and a quantum well �the

active region�. Such structure is simulated with a quantum

electron-transport simulator based on the algorithm dis-

cussed in Ref. 50, where it is demonstrated that the many-
particle Schrödinger equation can be efficiently solved using
quantum �Bohmian� trajectories computed from �time-
dependent� single-particle Schrödinger equations. In this pa-
per, we assume a constant effective mass m=0.067mo, with
mo the electron free mass, along the whole structure that
accounts for the interaction of free electrons with the peri-
odic atomic structure under the Born-Oppenheimer
approximation.62 In any case, the BCs algorithm presented in
this paper can be straightforwardly adapted to a discrete de-

scription of the atom structure. Then, the analytical expres-

sions of Sec. II B have to be matched to the Hartree potential

of the simulation box. Transport takes place from source to

drain direction. The lateral dimensions are Ly =Lz=48.6 nm.

The practical quantum algorithm for the RTD implies solving

numerically N�t� time-dependent single-particle 1D

Schrödinger equations50 for the transport direction x. All

Schrödinger equations are coupled to the Poisson equations

with the BCs given by our algorithm. The number of elec-

trons, N�t�, around 20–30, implies a computational time on

the order of 1–2 days per bias point. In order to take into

account the Friedel oscillations54 and the formation of qua-

sibound states53 in the leads, we extend the simulation box

inside the leads a distance �Lx. More technical details about

the computation of Bohmian trajectories can be found in

Refs. 30 and 50 and Table II.

Lwell

N+

N+
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y
x

Drain

Source

Lz

Ly

Lx
Wbarrier

N

Lc

Lc

�Lx

FIG. 13. �Color online� Schematic representation of the

RTD.

TABLE II. Parameters for the RTD depicted on Fig. 13.

Units Symbol Value

Lengths �nm� Lx 17.1

Ly 48.6

Lz 48.6

�Lx 4.5

LC 6

Equilibrium screening

lengths �nm� l 1.8

Barrier dimensions �eV� High 0.6

Relative permittivity �nm� Lwell 5.7

�nm� Wbarrier 1.2

Air 1.0005

Spatial step

�Poisson equation�
GaAs 13.1800

AlGaAs 11.7760

�nm� �x 0.30

Spatial step

�Schrödinger equation�
�nm� �y 8.1

�z 8.1

�xS 0.3

Doping �cm−3� Channel N Intrinsic

Contact N+ 4.8�1018

GaAs conductivity �� m�−1 � 1.5�105

Dielectric relaxation time �sec.� �c 5�10−14

Simulation time �sec.� T 4�10−11

Temporal step

�Poisson equation� �sec.� �t 8�10−16

Temporal step

�Schrödinger equation� �sec.� �tS 2�10−17
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In Fig. 14, we present the current-voltage curves of the

simulated RTD using our BCs algorithm �solid circles� and

standard Dirichlet external bias BCs �open circles�. As it can

be observed, the differences between these two approaches

appear not only in the magnitude of the current but also in

the position of the resonant voltage. These differences are

fully compatible with previous current-voltage simulations

done with/without explicitly including the leads in the self-

consistent simulation scheme.33 The differences in Fig. 14

can be easily explained from the information depicted in Fig.

15.

In Fig. 15, we represent the �time-averaged� voltage drop

�VS/D of the scalar potential outside the simulation box de-

fined as, �VS=VS
C−VS in the source and �VD=VD−VD

C in the

drain regions. While Dirichlet BCs assume a zero-voltage

drop outside the simulation box, our BCs algorithm predicts

a nonlinear drop of the bottom of the conduction band at the

borders of the simulation box. In particular, �VD is higher

than �VS in magnitude and it is the main responsible of the

displacement of the resonant voltage. As seen in the insets

�a� and �b� of Fig. 15, our model predicts a drop of the scalar

potential in the drain lead that maintains the resonant energy

level significantly above the bottom of the source conduction

band at that particular 0.2 V bias �i.e., the resonant voltage

for the Dirichlet external bias�. As explained in Sec. III, the

behavior of �VD and �VS is also coupled to the value of �D

and �S. The latter, in turn, are the responsible of a higher

source injection that explains the higher current when our

BCs algorithm is used.

In Fig. 16, we discuss in detail the coupling between

�VS/D and �S/D. First, let us notice that the BCs with a stan-

dard Dirichlet conditions equal to the external bias always

injects electrons at the same rate because it does not allow

neither a displacement of the bottom of the conduction band

VS/D nor a movement of the injecting energy levels FS,D
inj .

Thus, the injecting probabilities of Eqs. �25� and �26� remain

bias independent. On the contrary, our BCs algorithm does

not fix any of the two parameters. We have only an indirect

control on the values of �S/D because we can only increase/

decrease the rate of injection into the simulation box by

modifying the values FS/D
inj and VS/D �see expressions �25� and

�26��. As seen in Fig. 16, for bias below 0.15 V, the charge

injected from the source border decreases while the charge

injected from the drain increases with the bias. These in-

jected charges and the potential profiles are consistent with

the requirement of overall charge neutrality. In particular, the

increase of the electrons injected from the source is the main

reason why our algorithm predicts a larger current than the

results obtained from a Dirichlet external bias. The situations

changes when the external bias approaches 0.2 V. The prob-

ability of injecting electrons from the drain is very low so

that any further decrease in the injecting energy level does

not cause any variation in the charge density there. There-

fore, the only way to decrease an excess of negative charge

in the whole system, in order to achieve overall charge neu-

trality, is creating a depletion region at the drain side �see

expression �42��. For larger values of �VD, the most relevant

effect in the drain lead is not the screening of positive charge

by electrons but the appearance of a depletion region. As

discussed in Sec. IV A, this is an important contribution of

FIG. 14. �Color online� RTD Current-voltage characteristic tak-

ing according to our BCs algorithm �solid circles� and to a Dirichlet

external bias BCs �open circles�.
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FIG. 15. �Color online� Potential-energy drop in the highly

doped drain lead, −q�VD �red circles�, and in the source lead,

−q�VS �black squares�. The insets represent a schematic represen-

tation of the potential energy profile at V=0.2 V using �a� our BCs

algorithm and �b� the Dirichlet external bias approach.

FIG. 16. �Color online� On the left axis: injecting charge density

at the borders of the simulation box as a function of the applied

bias. On the right axis: depletion lengths as a function of the applied

bias. The dashed line represents the constant injected charge density

obtained with external bias Dirichlet BCs.
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our BCs algorithm that allows us to satisfactory simulate far

from equilibrium conditions in small simulation boxes of

electron devices.

Finally, in Fig. 17, we discuss the resulting pseudo- �res-

ervoir plus lead� resistances. The external bias Dirichlet BCs

predicts a zero effective resistance and our BCs algorithm

describes a highly asymmetric and nonlinear behavior. Even

more, the source pseudoresistance takes negative values up

to very high applied bias �the negative sign in the pseu-

doresistance means a positive spatial derivative of the poten-

tial energy�. In any case, obviously, the total �source, sample

plus drain� resistance is positive. Importantly, the practical

results of such lead resistances are quite different from the

expressions �A1� and �A2� deduced in Appendix A, where a

constant value of both resistances is predicted. In Appendix

A, zero temperature is assumed while, here, we consider a

room temperature and an energy-dependent density of states.

In addition, in Appendix A, Poisson equation is substituted

by some kind of linear “capacitor” that can be justified for

small variations around equilibrium. However, here, we

solve explicitly the Poisson equation and the charge is re-

lated not only to the number of electrons but also to its

dynamics �fast electrons provide less charge than slow elec-

trons�.
In conclusion, in the results of the RTD with our BCs

algorithm, we can guarantee that the profile of the charge

density along the whole device �the reservoirs, the leads, and

the sample� is compatible with the requirement of overall

charge neutrality discussed in the introduction. In addition,

we can also guarantee that the profiles of the electric field

and scalar potential are self-consistent with the previous pro-

file of the charge density. Even more, the requirement of

overall charge neutrality is achieved in time intervals related

with the relaxation dielectric time.

V. CONCLUSIONS

The Coulomb interaction among electrons introduces two

fundamental requirements for the accurate simulation of

electron devices. First, the screening of electrons implies that

the total charge in the whole �reservoirs, leads plus sample6�
device region is zero, i.e., overall charge neutrality. Second,

the total time-dependent current computed in a surface of the
simulation box is equal to that measured by an ammeter far
from the sample, i.e., current conservation.

Due to the computational burden associated to quantum
and atomistic description of nanoscale structures, the explicit
and accurate simulation of the lead-sample-lead region6 is
not always possible. Therefore, quite often, a small simula-
tion box that excludes the leads6 is a mandatory requirement
in modern electron-transport simulators. This restriction on
the box length is a serious problem for the requirement of
overall charge neutrality because the total charge has to in-
clude the �accumulated/depleted� charge in the leads. In ad-
dition, the inaccuracy in achieving the overall-charge-
neutrality requirement affects the computation of the time-
dependent variations in the scalar potential �i.e., the electric
field� and, thus, the requirement of current conservation.

As explained in the introduction, all BCs used in electron
transport simulators are based on specifying the value of the
scalar potential, or the electric field, at the borders of the

simulation box �“border_potential_BCs”� and the charge

density there �“border_charge_BCs”�. However, it is very

difficult to anticipate an educated guess for these magnitudes

at the boundaries of a small simulation box that excludes the

leads �see Sec. IV B�. Alternatively, in Sec. II, we have de-

veloped analytical and time-dependent expressions for the

charge density, the electric field, and the scalar potential

along the leads and reservoirs. These analytical expressions

take into account electron screening leading to accumulation

and depletion regions in the leads. From these analytical ex-

pressions, we can transfer the assumptions about the BCs at

the borders of a small simulation box into the simpler speci-

fications of the BCs deep inside the reservoirs. This is the

key point of our BCs algorithm. In particular, the two new

BCs that we impose deep inside the reservoirs are, first, the

electric field tends to a drift value ES/D
C �t�→ES/D

drift�t� �that we

refer as “deep_drift_BCs”� and, second, the scalar potentials

deep inside the reservoir is fixed by the external bias VS
C�t�

=0 and VD
C�t�=Vexternal�t�. In Sec. IV A, we have shown that

these two new BCs conditions are perfectly supported from a

numerical MC solution of the nonequilibrium Boltzmann

equation in a large simulation box that includes the leads and

reservoirs.

Our BCs algorithm requires a minimum computational

effort and it can be implemented into either quantum or clas-

sical time-dependent simulators, for dc, ac, and current �or

voltage� fluctuations. We have tested our BCs algorithm with

semiclassical MC simulations of a nanoscale silicon resistor

with large and small simulation boxes. As seen in Fig. 4, the

excellent agreement between both sets of simulations con-

firms the accuracy of our BCs algorithm. Let us emphasize

that no fitting parameter is used and that our BCs algorithm

includes the trivial series resistance plus the complicated

lead resistance �see Appendix A�. We have also presented a

numerical simulation for a �quantum� double barrier RTD to

show the importance of the BCs discussed here. In particular,

we have highlighted that our BCs algorithm is able to discuss

far from equilibrium situations where depletion lengths in

the leads have to be added to standard screening. Our BCs

algorithm guarantees that the profile of the charge density

along the whole device �not only along the simulation box

FIG. 17. �Color online� Pseudoresistance of the RTD in the

drain and source regions.
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but the reservoirs, the leads, and the sample� is compatible

with the requirement of overall charge neutrality and that the

profiles of the electric field and scalar potential are self-

consistent with the charge density along the whole device.

The numerical results presented in this paper deal with

classical and quantum dc scenarios. However, our BCs algo-

rithm can be equivalently applied to ac �time-dependent�
scenarios up to a frequency fqs �defined from the lowest-

frequency restriction for the validity of expressions devel-

oped in Sec. II�. The requirement of overall charge neutrality

is achieved in time intervals related with the relaxation di-

electric time of the device. Therefore, for time intervals

lower than the inverse of fqs, the temporal variations in the

scalar potential �and the electric field� at the borders of the

simulation box are physically meaningful because they are

the reaction of the Coulomb interaction in the whole electron

device system to temporal perturbation that deviates the de-

vice from its “state” compatible with overall charge neutral-

ity. Such frequency-dependent correlations allows us to con-

fidently compute the displacement current �i.e., time-

dependent variations in the electric field inside� in the

simulation box and assume that the total current computed

there is equal to the value measured in an ammeter far from

the simulation box, i.e., current conservation.

Identically, the frequency-dependent correlations included

into our BCs algorithm, due to sample-lead Coulomb inter-

action, allow us to investigate the computation of �zero-

frequency or high-frequency� current fluctuations beyond the

standard external zero impedance assumption �i.e., most of

the computations of current fluctuations in electron devices

assume that the voltage applied in the simulation box is a

nonfluctuating quantity�. As discussed at the end of Sec.

IV C, the intrinsic charge fluctuations are coupled to voltages

fluctuations at the borders of the simulation boxes that, in

turn, induce additional fluctuations of the injected charge

�i.e., current� in a quite complicated self-consistent loop.

Studies of these topics are in progress.
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APPENDIX A: QUALITATIVE ESTIMATION OF LEAD
RESISTANCE IN PURE BALLISTIC DEVICES

As mentioned in the introduction, the importance of the

resistance in the leads when dealing with electric transport

through ballistic devices was well understood some time ago

due to the enlightening work of Landauer, Büttiker, and

co-workers1–5 on the “two-terminal” G2t and “four-terminal”

G4t conductances. We will use here an argument to obtain the

same lead resistances but emphasizing the role of the overall

charge neutrality requirement mentioned along this paper.

The effect of these lead resistances on the measured charac-

teristics of the electron device is, somehow, rediscovered for

each new generation of electron-transport simulator �see, for

example, Ref. 33 for a discussion of this issue on the self-

consistent scattering-states algorithm for a RTD or Ref. 45

for a DFT electron-transport simulator�.
As depicted in Fig. 18, we define the sample �or the active

region6� as an obstacle that is tunneled by electrons. We do

also consider two ideal reservoirs acting as a perfect

�absorbing/emitting� black bodies with a source �S and drain

�D well-defined electrochemical potentials. We defined the

leads as the region that connects the obstacle �i.e., sample�
with the ideal reservoirs. Electrons leaving the sample, either

by transmission or reflection, are effectively screened and

they suffer inelastic scattering, so that their energy distribu-

tion becomes a �quasi-� equilibrium distribution at the reser-

voir. The “two terminals” conductance G2t= I /V2t=2q2T /h is

defined as the total average �dc� current I divided by the

voltage drop V2t=VD
C −VS

C between the reservoirs.1–3 The pa-

rameter T is the transmission coefficient of a tunneling ob-

stacle, h the Plank constant. The original formulation of the

“four terminals” conductance proposed by Landauer4,5 was

G4t= I /V4t=2q2 /h�T /R�, when V4t=VD−VS. The difference

between both expressions is due to the resistance �i.e., volt-

age drop� in the leads.

Now, we deduce the value of such lead resistances in

the source and drain by imposing �a simplified version of�
the overall charge neutrality requirement mentioned in the

paper. As seen in Fig. 18, we apply a bias V2t=VD
C −VS

C

= ��S−�D� /q with net flux of electrons from source to drain.

The energies −qVS
C and −qVD

C are the conduction band bot-

tom at the source and drain reservoir, respectively. Deep in-

side the source reservoirs, the total particle density is equal

to the doping density ND. Thus, nS
C=n�S

C+n�S
C=ND, where n�S

C

and n�S
C refer to the particle density of electrons with positive

�from left to right� and negative velocities, respectively. If

the series resistances of the reservoirs are negligible, we can

assume n�S
C=g��S+qVS

C�=ND /2 and n�S
C=g��S+qVS

C�=ND /2

-q· SV -q· DV

Sn
�

Sn
�

Reservoir ReservoirLead LeadSample

-q· C
SV

-q· C
DV

�S

�D

-�S �S-�D �S�D-�D

g·T
g·R

g·T
g·R

Dn
�

Dn
�

FIG. 18. �Color online� Schematic representation of the bottom

of the conduction band and the electrochemical potential as a func-

tion of position for a tunneling obstacle with transmission T and

reflection R coefficients. Left/right insets: particle density on the

source/drain lead as a function of the kinetic energy �with sign

defined by their velocity direction� of electrons. The total particle

density n�S/D �n�S/D� of electrons in the source/drain lead is equal to

the area above of the negative �positive� axis. Solid green �dashed

red� indicates electrons initially injected from the drain �source�
reservoir.
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where g is the density of states that we assume constant in

order to avoid irrelevant energy integrals in our qualitative

argumentation. In addition, zero temperature is assumed to

simplify arguments. Identical charge distribution can be de-

fined in the drain reservoir.

However, close to the barrier, in the leads, the electron

charge density depends on the barrier transmittance. The

number of electrons arriving at one lead depends on the

number of electrons injected from the reservoir of the other

side and the transmission of the barrier. For example, elec-

trons with negative velocity in the source lead are those in-

cident from the drain region and effectively transmitted, plus

those incident from the source that have been reflected by the

barrier, n�S=Tg��D+qVS�+Rg��S+qVS�. On the other hand,

electrons with positive velocity in the source lead are n�S

=g��S+qVS�. In particular, in a simple treatment of the Cou-

lomb interaction, we define −qVS and −qVD as the energies

of the conduction band bottom at the source and drain leads,

respectively. See left inset in source region of Fig. 18.

In order to accomplish the overall-charge-neutrality con-

dition, assuming that the reservoirs are already neutral and

that the charge in the barrier regions is negligible, then, the

total charge in each lead must be neutral �i.e., electron charge

equal to the doping� to assure overall charge neutrality in the

whole device. This is the crucial point of our argumentation

in this appendix. Therefore, for the degenerate system con-

sidered here �where the Pauli principle implies that any in-

crease in charge must come from higher energies� the voltage

close to the barrier must vary to accommodate the previous

charge-neutrality restriction. Thus, the charge neutrality at

the leads, n�S+n�S=ND with n�S=Tg��D+qVS�+Rg��S+qVS�
and n�S=g��S+qVS�, implies the following relationship

between the reservoir and lead voltages, VS=VS
C+T��S

−�D� / �2q�, with a source lead “pseudoresistance” equal to

RSL =
VS − VS

C

I
=

T��S − �D�/�2q�
2q2T/hV2t

=
1

2

h

2q2
. �A1�

The bottom of the conduction band decreases in the source

lead because the number of electrons with negative velocity

is less than expected in the energy range �S−�D �i.e., only

electrons reflected by the barrier in the source will contribute

to n�S�. Identically, electrons with positive velocity in the

drain lead are transmitted electrons from the source or re-

flected electrons from the drain, n�D=Tg��S+qVD�+Rg��D

+qVD� and n�D=g��D+qVD� Then, from the charge neutrality

condition, n�D+n�D=ND, we obtain the relation VD=VD
C

−T��S−�D� / �2·q� that implies the drain lead pseudoresis-

tance

RDL =
VD

C − VD

I
=

T��S − �D�/�2q�
2q2T/hV2t

=
1

2

h

2q2
. �A2�

Again, we realize that the bottom of the conduction band in

the drain lead have to be a bit higher than that deep in the

reservoir because the number of electrons with positive ve-

locity is more than expected in the energy range �S−�D.

In many textbooks,65 there is an even simpler develop-

ment of the expression of the source in Eq. �A1� and drain in

Eq. �A2� lead expressions of the pseudoresistances. If we

assume a zero-series resistance in the reservoir, the total con-

ductance G2t= I /V2t=2q2T /h can be decomposed as follows:

1

G2t
=

h

2q2T
=

h

2q2�1 +
1 − T

T
� =

h

2q2
+

h

2q2

R

T

= RSL + RDL +
h

2q2

R

T
, �A3�

where RSL=h /4q2 is the source lead resistance, RDL=h /4q2

is the drain lead resistance and hR / �2q2T� the intrinsic

sample resistance deduced by Landauer, originally.

This simple example does show the inevitable presence of

lead resistances in ballistic systems. The accurate computa-

tion of such resistances needs a more appropriate treatment

of the Coulomb interaction among electrons than the capaci-

tive linear relation between charge and voltage that we have

assumed above. Therefore, a better treatment of coulomb in-

teraction in the leads needs a self-consistent solution of the

charge density and scalar potential, as we did in the paper.

Finally, let us emphasize the different origins of the

standard-series resistance present in any electron device and

the lead resistances discussed here. The former is due to the

presence of a small and homogenous electric field deep in-

side the reservoir, which provides a net current. The voltage

drop in the reservoir is only due to this homogenous electric

field deep inside the reservoir where local charge neutrality

is guaranteed. However, the voltage drop in the leads is im-

posed by the Poisson �Gauss� equation that relates the shape

of the charge density to the voltage drop in the conduction

band close to the tunneling obstacle with a complicated non-

homogenous electric field. As seen in Sec. II B, the first term

of the right-hand side of expressions �21� and �22� account

for the reservoir series resistance while the rest account for

the complicated lead resistance.

APPENDIX B: THE QUASISTATIC ELECTROMAGNETIC
APPROXIMATION FOR THE TIME-DEPENDENT

SIMULATION OF NANOSCALE ELECTRON DEVICES

Along this paper, we have assumed that the dynamics of

electrons is controlled only by the scalar potential. We have

argued that our algorithm is valid even for terahertz frequen-

cies. However, in principle, any time-dependent variation in

the scalar potential must imply a time-dependent vector po-

tential. We discuss here the validity of our assumption of

neglecting the vector potential.

In principle, electron dynamics in nanoscale electron de-

vices are determined by, both, the �time-dependent� electric

field intensity, E� �r� , t�, and the magnetic flux density, B� �r� , t�.
The electric field intensity is computed from the scalar po-

tential, V�r� , t�, and the vector potential, A� �r� , t�

E� �r�,t� = − �� V�r�,t� −
�A� �r�,t�

�t
�B1�

while B� �r� , t� depends only on the vector potential B� �r� , t�
=�� �A� �r� , t�. These electromagnetic fields can be computed

from the four well-known Maxwell17 equations

TIME-DEPENDENT BOUNDARY CONDITIONS WITH LEAD-… PHYSICAL REVIEW B 82, 085301 �2010�

085301-19



�� · D� �r�,t� = ��r�,t� , �B2a�

�� · B� �r�,t� = 0, �B2b�

�� ∧ E� �r�,t� = −
�B� �r�,t�

�t
, �B2c�

�� ∧ H� �r�,t� = J��r�,t� +
�D� �r�,t�

�t
, �B2d�

where H� �r� , t�=B� �r� , t� /� and D� �r� , t�=�E� �r� , t� are the mag-

netic and electric flux intensities, and J�c�r� , t� and ��r� , t� are

the �particle� current and charge densities, respectively.

However, when no external magnetic field is applied to a

nanoscale electron device, the electron dynamic in nanoscale

systems can be computed only from the scalar potential. This

quasistatic electromagnetic approximation assumes that the

time-dependent magnetic induction in the definition of the

electric field in Eq. �B2c� can be neglected. Then, the electric

field is essentially an irrotational vector, �� ∧E� �r� , t�=0 There-

fore, the electric field, decoupled from the magnetic counter-

part, can be computed from

E� �r�,t� � − �� V�r�,t� . �B3�

Equations �B3� leads to the time-dependent Poisson equation

used in our paper

�� ���� V�r�,t�� = − ��r�,t� . �B4�

The �time-dependent� boundaries conditions of the scalar po-

tential imposed on the open52 borders of the simulation box

are the central issue of this paper.

Let us discuss the limits of applicability of the quasistatic

approximation in nanoscale electron devices. For a simple

estimations, we assume only one typical length scale L so

that we can approximate spatial derivatives that make up the

curl and divergence operators by � /�x�1 /L. Identically, we

assume that time derivatives are roughly equal to a multiply-

ing factor f related to the frequency of the signal, � /�t� f .

Then, from the gauss law in Eq. �B1� we obtain for the

charge density ��r� , t��� ·E /L with E�max�E� �r� , t��. Identi-

cally, from the continuity equation

���r�,t�
�t

+ �� J��r�,t� = 0, �B5�

we obtain for the current density J��r� , t��� ·E · f . From the

knowledge of the current and charge density, we can estimate

the magnetic flux, using Eq. �B1�, as B� �r� , t��� ·� · fLE �we

neglect numerical factors such as 2�. Then, the vector poten-

tial is A� �r� , t��� ·� · fL2E and its time derivative is

�A� �r� , t� /�t�� ·� · f2L2E. On the other hand, the gradient of

the scalar potential can be written as �� V�r� , t��E. Finally, we

obtain that the electric field in Eq. �B1� can be written as

expression �B3� under the quasistatic assumption � ·� � f2L2

�1. This inequality can be interpreted as the condition that

the length L of the system is much smaller than the wave-

length �=c / f of the electromagnetic signal of frequency

f �with c=1 /��� the speed of the electromagnetic signal�.
For the dimensions used in this work, never longer than few

hundreds of nanometers, the contribution of the electromag-

netic vector potential can be reasonably neglected at frequen-

cies lower than about 10 THz.66,67 If one is interested in

using larger reservoirs �with L on the order of microns� this

approximation is not valid and a whole electromagnetic so-

lution is needed to treat electromagnetic transport, as dis-

cussed in Ref. 68.

Let us clarify that one can arrive to the time-dependent

Poisson Eq. �B4� directly from the Coulomb gauge. We have

not followed this path here because we are not only inter-

ested in arriving to Eq. �B4� but also in showing that the

electric field is much more important than the magnetic field

when describing electron dynamics. In particular, with the

approximations discussed above we realize that the Lorentz

force F� �r� , t�=q ·E� �r� , t�+q ·v��r� , t��B� �r� , t� can be written as

�F� �r� , t���q ·E+q� ·� · f2L2E, where we have assumed that

the electron velocity �v��r� , t���Lf . Then, from the previous

scenarios that satisfy the quasistatic condition � ·� · f2L2�1,

we realize identically that the magnetic field can be ne-

glected in front of the electric field when describing electron

dynamics.
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