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We construct a coarse-grained, structure-based, low-resolution, 6-bead flexible model of bovine serum albumin (BSA,
PDB: 4F5S), which is a popular example of a globular protein in biophysical research. The model is obtained via direct
Boltzmann inversion using all-atom simulations of a single molecule, and its particular form is selected from a large
pool of 6-bead coarse-grained models using two suitable metrics which quantify the agreement in the distribution of
collective coordinates between all-atom and coarse-grained Brownian dynamics simulations of solutions in the dilute
limit. For immunoglobulin G (IgG), a similar structure-based 12-bead model has been introduced in the literature (J.
Phys. Chem. B 116, 8045 (2012)) and is employed here to compare findings for the compact BSA molecule and the
more anisotropic IgG molecule. We define several modified coarse-grained models of BSA and IgG, which differ in
their internal constraints and thus account for a variation of flexibility. Studying denser solutions of the coarse-grained
models with purely repulsive molecules (achievable by suitable salt conditions), the effect of packing and flexibility on
dynamic and static behavior is studied. Translational and rotational self-diffusivity is enhanced for more elastic models.
Finally we discuss a number of effective sphere sizes for the BSA molecule which can be defined from its static and
dynamic properties. Here it is found that the effective sphere diameters lie between 4.9 and 6.1 nm, corresponding to a
relative spread of about ±10% around a mean of 5.5 nm.

I. INTRODUCTION

Bovine serum albumin (BSA) is a globular protein1 which
is widely used in biochemical2–5 and biophysical6–10 re-
search. It serves notably as a model system for study-
ing static structure, phase behavior and dynamic proper-
ties of biomacromolecules.11 A rather simple colloid picture
has proven remarkably successful in describing BSA solu-
tions. Intensities from static scattering experiments can be
described well by assuming ellipsoidal form factors and struc-
ture factors from hard-sphere Yukawa models for BSA in
NaCl solutions.12,13 Trivalent cations in BSA solutions lead to
strong attractions and reentrant phase behavior, but also here
an isotropic colloidal model (sticky hard spheres) seems to be
sufficient to describe static scattering.14–18

Self-diffusion in crowded (globular) protein systems is also
often discussed in reference to isotropic colloidal models. One
needs to distinguish between short-time and long-time diffu-
sion coefficients, where short-time diffusion is mainly gov-
erned by hydrodynamic interactions, and long-time diffusion
in general contains effects of both hydrodynamics and in-
termolecular interactions. Long-time self-diffusion in BSA
solutions was measured by Muramatsu and Minton already
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in 1988 and discussed in a pure hard sphere picture.19 The-
oretical work by Tokuyama et al. on the self-diffusion for
biomolecules considers the hard sphere model as sufficient for
short-time diffusion, but relates the long-time diffusion coeffi-
cient to a reference system of soft spheres.20 This bears some
connection to the paradigm of universality in simple liquids
put forward by Dyre and coworkers, where the reference sys-
tem is also a soft system and not hard spheres.21 The hard-
sphere picture for short-time diffusion in BSA solutions has
been well corroborated in neutron scattering experiments.22,23

For long-time diffusion in BSA, experiments and Brownian
dynamics simulations reported in Ref. 24 indicate some de-
viations from the “soft-sphere universality”. Here the simu-
lations were performed using a rigid model but with atom-
istically resolved anisotropy, with interatomic repulsions and
Debye-Hückel interactions between effective charges. The
latter work inspires to look at anisotropy effects in BSA sys-
tems.

A popular strategy in soft matter physics to model poly-
meric systems is to represent the molecule by a reduced
number of effective beads with effective intermolecular and
intramolecular interactions and, thus, to establish a coarse-
grained picture. Immunoglobulin (IgG) molecules, due to
their relevance in immunology and pharmaceutics, as well as
due to their remarkably anisotropic shape, constitute a partic-
ular example where a number of studies have used such an
approach to describe numerous different aspects such as self-
association, diffusion, clustering, scattering intensity profiles,
network formation and viscosity behavior.25–39
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The aims of the paper are as follows. Using atomistic
simulations of single BSA molecules, we construct a coarse-
grained (CG) 6-bead model. This approach is, in spirit, very
similar to the construction of coarse-grained bead models for
IgG in Ref. 27. For both the newly constructed CG model for
BSA and the 12-bead model for IgG from Ref. 27 pair corre-
lations and translational/rotational diffusion are examined us-
ing overdamped Brownian dynamics (BD) simulations. Here,
bead interactions in the CG models are taken to be repulsive.
For BSA solutions at physiological conditions (around neu-
tral pH and salt concentration ∼ 0.3 M), the Debye length is
approximately 0.6nm, which results in a strong screening of
electrostatic interactions. In similar conditions, van der Waals
interactions are also rather small, as reflected by a positive
second virial coefficient.40,41 We thus focus on the excluded
volume effects in dense solutions. We analyze pair corre-
lations with effective, isotropic potentials, which turn out to
be rather soft and less frequently used in colloidal modelling.
Diffusion from BD simulations is certainly not realistic in the
short-time regime, due to the neglect of hydrodynamic inter-
actions (HI), but here we focus on the ratio of long–term to
short–term diffusion coefficients (which should be mainly de-
termined by interactions between the proteins and not HI) and
examine the effects of varying the flexibility of the coarse-
grained molecules. Here, it is interesting to contrast the more
globular BSA molecule with the IgG molecule which pos-
sesses three globular regions connected through a flexible
hinge region, thus forming a Y-shape. For both molecules,
one globular and one more anisotropic, employing the experi-
mentally determined HI, our simulations reproduce the exper-
imentally observed long-time diffusion coefficients to a good
extent.

II. COARSE-GRAINED (CG) MODELS FOR BSA AND IGG

A. BSA: CG beads from protein domains

The BSA protein consists of 583 amino acid residues which
can be divided into six biological domains (Fig. 1(a)) whereby
the specific loci of the domains within the sequence can be
obtained from the protein structure classification database
CATH.1,42 In this work we propose a structure-based CG
model for BSA, in which each of the protein biological do-
mains is represented by a single bead and the connectivity of
the different beads capture the internal dynamics of the pro-
tein. Note that other, more general-purpose CG models, e.g.
the MARTINI43,44 model, have shown to be useful in a variety
of situations, but are not adequate for evaluating the internal
dynamics of proteins. The location of the CG sites is based
on the center-of-mass of these domains (Fig. 1(b)), whereby
any residue not part of a biological domain has been included
to its nearest domain. The X-ray crystal structure and residue
sequence used here to associate residues to a CG bead were
obtained from the protein database (PDB ID: 4F5S, reported
in Ref. 1). Note that previous studies have used more sophisti-
cated methods such as neural network topology building,45 or
elastic normal-mode analysis27 to determine the positioning

FIG. 1. (a) Tertiary structure1 of BSA with its domains in different
colors. (b) CG model of BSA showing the labelling of the different
CG beads superimposed onto the 3D structure of BSA. Tab. I reports
the composition of each of the CG beads. The beads are equally sized
with σBSA

bead = 29.52Å, see App. C for details.

of the CG sites, albeit, in the latter study the authors even-
tually also used the domain-based positioning of their beads.
Fig. 1(b) shows the different CG beads and their labels super-
imposed onto the tertiary structure of BSA. The labels of the
CG beads correspond to the sequence of the domains along
the amino acid backbone of the protein. The exact mapping
of the coarse-grained sites, their corresponding masses and
cumulative charges are reported in Tab. I.

TABLE I. Composition, masses and charges of the six BSA CG sites.
The charges are cumulative partial charges of the residues, whose
protonation states have been determined by the program pdb2gmx46

with default settings, which corresponds to the most common pro-
tonation state of amino acids at pH 7: Asp and Glu deprotonated,
Arg and Lys protonated, His dependent on optimal hydrogen bond
conformation.

Bead Residues Mass [kDa] Charge [e]
1 1-107 12.2 -9
2 108-195 10.3 0
3 196-295 11.3 1
4 296-380 9.7 -6
5 381-493 12.8 2
6 494-583 10.0 -4

From the CG representation one sees that beads 2–6 all lie
approximately in a plane while bead 1 sticks out of this plane,
so overall the molecule appears pancake–like with a protrud-
ing end. The flat shape of the molecule has been corroborated
by X-ray scattering, where a form factor for an oblate ellipsoid
of half axes 1.7×4.2×4.2 nm was fitted to scattering data.12

B. BSA: Parametrization of the intramolecular potentials for
the CG model

There are various methodologies to derive intramolecular
potentials between the CG beads, for reviews see Refs. 47–52.
In bottom-up approaches, these potentials are obtained from
all-atom (AA) simulations of the BSA molecule. A versa-
tile approach, popular in the biophysical community, are elas-
tic network models (ENM) in conjunction with normal mode
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analysis (NMA), which were first introduced by Tirion53 and
since then have become a popular and successful CG strategy
which accurately describe domain motions and collective dy-
namics in proteins.54 The original ENM by Tirion consists of
nodes, which are connected by harmonic springs with a uni-
form spring constant, provided that they are within a certain
cutoff distance. More advanced techniques have been devel-
oped by e.g. Hinsen55 (here, spring constants decay with in-
creasing distance of two nodes) or Lyman et al.56 (spring con-
stants are tuned for the CG molecule to yield correct mean-
square distance fluctuations).

Another versatile approach, adopted here, uses three stan-
dard classes of effective interaction potentials between CG
beads: bonds, angles and dihedrals. Bond potentials act be-
tween two CG beads, while angles and dihedrals apply forces
on three and four CG beads, respectively. Within the class
of bond potentials, one can define Urey-Bradley (UB) bonds,
where the two beads in the bond correspond to the outer beads
of an angle potential. All potentials are taken to be har-
monic in their specific generalized coordinate (bead distance
for bonds, the angle between three beads, or the dihedral an-
gle in the four bead configuration) with specific spring con-
stants. The use of these potentials is motivated by the basic
motions seen in chainlike molecules, and for IgG the respec-
tive bottom-up parametrization has been performed in Ref. 27,
which we will use and compare with our findings for BSA.
The determination of the spring constants was realized by di-
rect Boltzmann inversion which can be briefly summarized as
follows: In all–atom simulations (details in App. A), trajecto-
ries of the center-of-mass coordinates of the six residue groups
reported in Tab. I (corresponding to bead trajectories) are de-
termined and histograms in the generalized coordinates for the
interaction potentials are recorded. By assuming independent
thermal sampling of the generalized coordinates, these his-
tograms can be separately fitted to shifted Gaussians, with the
spring constants being related to the width of the Gaussian.
More details are found in App. B.

The derived force field is not only dependent on the se-
lected CG beads, but is also a function of the connectivity
between the beads in terms of bonds, angles and dihedrals
and their generalized coordinates. For a chosen connectivity
model (called topology in the following), the coordinates are
not statistically independent, and employing too many effec-
tive potentials easily results in an overconstrained molecule,
which is too rigid. Nevertheless, it is useful to consider such
an overconstrained topology as a starting point, so we pro-
pose a (nearly) fully bond-connected topology, which we call
FULL. Fig. 2(b) shows a visualization of the bond topology
and Tab. II reports the connectivity definitions of the differ-
ent bonds, angles and dihedrals. For the complete CG model
with the FULL topology, the spring constants for bonds, an-
gles and dihedrals are determined as described before (model
FULLo, referring to an optimal choice of force constants in
the FULL topology).

TABLE II. Connectivity of the FULL topology, which is realized
in the models FULLo and FULLrigid. The numbering of the CG
beads corresponds to the one shown in Fig. 2. The FULL topology is
determined by the following rules: (i) each bead is bond-connected to
its two nearest neighbors, (ii) each linearly bonded sequence (i, j,k)
of beads gives rise to an angle potential for the angle (i, j,k) and
beads i,k become connected by a UB bond (if not already bonded),
(iii) Four subsequent beads will be connected by a dihedral potential
(i.e. (1,2,3,4), (2,3,4,5), (3,4,5,6)). Three additional dihedrals
are added in a cyclic manner (i.e. (4,5,6,1), (5,6,1,2), (6,1,2,3))
to stabilize the three–dimensional structure.

Bonds UB-Bonds Angles Dihedrals
(1,2) (1,(2),6) (1,2,3) (1,2,3,4)
(1,3) (1,(3),4) (1,2,6) (2,3,4,5)
(2,3) (2,(3),4) (1,3,2) (3,4,5,6)
(3,4) (3,(2),6) (1,3,4) (4,5,6,1)
(4,5) (3,(4),5) (2,1,3) (5,6,1,2)
(5,6) (4,(5),6) (2,3,4) (6,1,2,3)
(6,2) (5,(6),2) (3,2,6)

(3,4,5)
(4,5,6)
(5,6,2)

We define another CG model based on the FULL topology,
which will be useful later on, namely the model FULLrigid,
which has the same topology but for which all force constants
are increased by a factor of 100, thus resulting in a molecule
that can be considered quasi-rigid (see Tab. IV for an overview
of the models discussed in this article.).

Deleting bonds and/or angles and/or dihedrals from the
FULL topology results in a considerable number of less con-
strained topologies. As the parametrization of the interactions
(bonds, angles and dihedrals) is independent of the topology,
any new CG model for these new topologies have the same
spring constants for their retained connections as in model
FULLo. An educated guess for a reasonable connectivity
comes from the domain sequence along the amino acid back-
bone (as reflected by the bead number). Direct bonds shall
only exist along the backbone. In the following we call this
domain structure–based topology STRUCT. See Fig. 2(a) for
a visualization of the resulting bond topology and Tab. III for
a listing of bonds, angles and dihedrals. The complete CG
model with the STRUCT topology and the spring constants
from FULLo is called STRUCTo.

TABLE III. Connectivity of the STRUCT topology, which is real-
ized in the models STRUCTo, STRUCTflex, and STRUCTnd. The
numbering of the CG beads corresponds to the one shown in Fig. 2.
The topology is determined by the rules: (i) subsequent beads will
be connected by a bond (e.g. (1,2), (2,3) etc.), (ii) three subsequent
beads will be connected by an angle potential (e.g. (1,2,3)), (iii) di-
hedrals from FULL are retained (with the exception of STRUCTnd).

Bonds UB-Bonds Angles Dihedrals
(1,2) (1,2,3) (1,2,3,4)
(2,3) (2,3,4) (2,3,4,5)
(3,4) (3,4,5) (3,4,5,6)
(4,5) (4,5,6) (4,5,6,1)
(5,6) (5,6,1,2)

(6,1,2,3)
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FIG. 2. Representation of the coarse-grained BSA molecule, show-
ing the bonds (grey connectors) and UB-bonds (red connectors) for
the two proposed topologies, (a) STRUCT and (b) FULL. Bead sizes
have been scaled down for better visibility.

Based on the STRUCTo model, we define two further CG
models by manipulating the spring constants. In the model
STRUCTflex the spring constants are multiplied by a factor
of 0.75 to represent a more flexible molecule. Secondly, in
the model STRUCTnd, all dihedral potentials are set to zero
which potentially destabilizes the overall three–dimensional
structure of the molecule.

To summarize, all proposed models for BSA (and IgG),
their underlying connectivities and features are reported in
Tab. IV.

TABLE IV. Overview of the five proposed coarse-grained BSA mod-
els, as well as the two IgG models. The topologies FULL and
STRUCT are defined in Tab. II and Tab. III.

Model Topology Spring constant multiplier Note
FULLo FULL 1 -

FULLrigid FULL 100 -
STRUCTo STRUCT 1 -

STRUCTnd STRUCT 1 no dihedrals
STRUCTflex STRUCT 0.75 -

IGGo - 1 from Ref. 27
IGGrigid - 100 from Ref. 27

As explained above, the STRUCT topology is solely based
on the main backbone structure, but other connectivities based
on the structure of the protein can be defined. To evaluate
the adequacy of the STRUCT topology to accurately cap-
ture the CG dynamics of the all-atom model and compare
it to other possible connectivities, we propose a systematic
coarse-graining strategy in which a number of unique topolo-
gies are created by randomly deleting bonds, angles and dihe-
drals from the FULL topology. More specifically, the protocol
is as follows: (i) all force field constituents (bonds, angles, di-
hedrals) are put in a single list. (ii) A random number r is
determined and r constituents are deleted from this list. (iii)
Uniqueness is enforced by skipping already generated topolo-
gies and a minimum number of 5 bonds is required. All the
spring constants for these models are those from FULLo.

Subsequently, for all topologies with their associated spring
constants, we run coarse-grained overdamped Brownian dy-
namics simulations of BSA molecules with only internal inter-

actions (corresponds to volume packing fraction Φ = 0) and
topologies yielding unstable molecules are omitted. We de-
fine two metrics to evaluate the quality of a CG model: The
first uses normalized histograms (probability distributions) of
all generalized coordinates presented in the FULL topology.
These are compared to the corresponding probability distri-
butions from all-atom simulations by calculating their com-
mon area (overlap), see App. D. For this, a simple metric
S ∈ [0,1] is defined as the average of all calculated common
areas. A value of 1 is optimal in the sense that the CG simula-
tions reproduce the ensemble-averaged configurational states
recorded in the all-atom simulations to at least the level of all
observed coordinate distributions. The second metric is based
on the commonly used root-mean-square deviation (RMSD)
of CG bead and all-atom residue group positions~ri,

RMSD(t) =

〈(

1
Nsites

Nsite

∑
i=1

|~ri(0)−~ri(t)|2
)1/2〉

. (1)

By definition, Eq. (1) entails optimal translational and rota-
tional superposition of the structure at time t to itself at t = 0.
The second metric is a time-averaged difference in RMSDs
from coarse-grained and all-atom simulations:

∆RMSD :=
∣

∣

∣
RMSDAA(t)−RMSDCG(t)

∣

∣

∣
, (2)

for more details on the averaging in Eqs. (1) and (2) we refer
to App. D.

Fig. 3 shows the values of S on the left y-axis for the
4730 topologies generated, as well as the five predefined ones,
where each point corresponds to one particular topology and
they are sorted in ascending order for S from left to right on
the x-axis. The points for the models FULLo, FULLrigid,
STRUCTo, STRUCTflex and STRUCTnd are highlighted. In
the same figure the right-hand y-axis shows the corresponding
∆RMSD for all topologies. Both similarity measures over-
all coincide in establishing, which topologies represent better
the flexibility of the all-atom model. A perfect match cor-
responds to ∆RMSD = 0 and S = 1. S clearly shows that
FULLrigid does not well in capturing the flexibility of the
molecule. The model FULLo performs better, but is still too
rigid as compared to the all-atom model. STRUCTnd has also
a comparably low value of S, because the neglect of dihedrals
compromises the three-dimensional stability (this will be im-
portant below). The models STRUCTo and STRUCTflex are
in the group of the best performers, i.e. SSTRUCTo = 0.9157
and SSTRUCTflex = 0.8902, with only 22 topologies being in
the interval S ∈ [0.89,1]. Furthermore, according to the mea-

sure S, STRUCTo is nearly optimal, with only one randomly
generated topology prevailing with S = 0.9161.

Obviously, disabling interactions, starting from the
FULL topology, can lead to better as well as to worse perfor-
mance. Further analysis of all generated force field composi-
tions shows that if the total number of force field constituents
falls below 12 (down from 30, which is the sum of all ele-
ments of the FULL topology, Tab. II), the resulting topology
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FIG. 3. The similarity measure S (Eq. (D3)) and the ∆RMSD
(Eq. (2)) measure for each of the 4735 structures studied. Each ver-
tical pair of cross and circle corresponds to a particular model gen-
erated from the FULL topology. The results are shown in ascending
order for S from left to right. Filled symbols show the results for
the five predefined models based on the FULL and STRUCT topol-
ogy (see Tab. IV). Grey/black symbols represent ∆RMSD values,
colored symbols S.

will certainly be in the lower third of poor performing topolo-
gies. On the other hand, if one compares topologies located
the top interval S ∈ [0.86,1] (10% of generated topologies) to

an adjacent interval below S ∈ [0.71,0.86] (62% of generated
topologies) the former all have significantly less UB-bonds,
angles and dihedrals on average (pointing to the mentioned
over-parameterization of the FULL connectivity), but for the
case of bonds it depends on which bonds are deleted. Here
it is found, that those top 10%, on average, have less bonds
not reflecting the amino acid sequence of BSA (i.e. (1,3) and
(6,2)), but approximately equal numbers of bonds reflecting
the sequence (i.e. (1,2), (2,3), etc.), compared to the previ-
ously mentioned adjacent, poorer performing set of topolo-
gies. This points to the effectiveness of the intuitive choice
of selecting the CG bond connectivity according to the amino
acid sequence. We refer to the supplementary material for the
data supporting these findings.

For completeness, we show in Fig. 4 RMSDCG(t) of the
models FULLo, FULLrigid, STRUCTo, STRUCTflex to-
gether with RMSDAA(t). As expected, a model with too many
connections or an overestimation of the spring constant can
lead to rigid-body-type structures that do not properly capture
the elasticity of the original structure. On the other hand, an
underestimation of the spring constants seems to better repro-
duce the flexibility of the all-atom BSA simulation.

As outlined above, the flexibility of CG molecules has been
either manipulated by changing the combination of interac-
tion potentials, or by scaling the spring constants by a constant

0 1 2 3
Evaluation step ×102

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
M
S
D
(t
)[
Å
]

All-atom, six
residue groups

All-atom, six
residue groups,
average, last 80%

CG, FULLo

CG, FULLrigid

CG, STRUCTo

CG, STRUCTflex

FIG. 4. RMSDAA(t) (Eq. (1)) of the COM of the six residue groups
defined in Tab. I, averaged over 21 all-atom trajectories where the
first 10ns have been omitted, in total spanning 90ns (grey), its
time-average over the last 80% of time steps, RMSDAA(t) = 1.16Å
(dashed black), as well as RMSDCG(t) for four proposed CG models
at Φ = 0 (colored), spanning 10τBD. The Brownian time τB is de-
fined in Eq. (C3). Timescales between AA and CG simulations are
not straightforwardly convertible, so we refer to “Evaluation steps”
on the x-axis. Note that the result for STRUCTnd is not shown, since
its RMSD(t) saturates at approximately 12Å, much higher than the
other models.

value. A more systematic investigation of the latter approach,
where the spring constants of FULLo and STRUCTo have
been altered in small steps and S and ∆RMSD has been calcu-
lated, can be found in the supplementary material. To summa-
rize, the findings are as follows: First, the FULLo model can
be improved by reducing all spring constants by a factor of
0.4 in order to yield an equally high S value like STRUCTo,
though, from a computational point of view, it is more effi-
cient to utilize STRUCTo over FULLo. Second, reducing all
spring constants of the model STRUCTo by a factor of 0.75
(which is per definition equivalent to the model STRUCTflex)
minimizes the resulting ∆RMSD, whereas it is not needed to
rescale the spring constants of STRUCTo in order to maximize
the resulting S. This confirms the well-known observation that
there is no unique similarity measurement and that one or sev-
eral have to be chosen depending on the possible application
of the CG model.57

We refer to the supplementary material for detailed data on
the performance of the various models and topologies with re-
spect to generalized coordinate overlap areas, which are bro-
ken up according to bonds, angles and dihedrals, on the num-
ber of total force field constituents compared to their perfor-
mance, on the occurrence probabilities of specific constituents
in specific performance intervals, as well as the aforemen-
tioned, more detailed investigation of spring constant manip-
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ulation.
Additionally, we conducted an Essential Dynamics (ED)

analysis58 on our all-atom and CG trajectories to evaluate
how internal dynamics of BSA (with respect to coordinate-
covariances) are represented by our CG models. For
comparison, we also implemented a simple, fully-bonded
ENM, whose spring constant has been chosen such that the
coarse-grained mean-squared fluctuation of AA simulations
are reproduced. To summarize our findings: The model
STRUCTo (which yields the highest ¯̄S of all BSA models in
Tab. IV) exhibits an amount of total positional fluctuation that
lies within the error range of the coarse-grained all-atom fluc-
tuations. STRUCTo also features the best agreement of dy-
namic cross-correlations compared to AA. The simple ENM
gives a reasonable average overlap-parameter ( ¯̄S ≃ 0.80), but
fails to reproduce the proper directions of motion (eigenvec-
tors of the coarse-grained positional covariance matrix). De-
tailed data and description of the performed ED analysis are
available in the supplementary material.

C. Coarse-grained model for IgG

The family of Immunoglobulin G (IgG) are Y-shaped
molecules about 2.2 times heavier than BSA molecules. The
three arms of the “Y” are loosely connected in the hinge re-
gion, such that IgG is expected to be more anisotropic and
flexible than BSA. The molecule consists of 2×6 domains,
building the right and the left part of the “Y”, seen from
its symmetry axis (see Fig. 5(a)). In Chaudhri et al., a 12-
bead coarse-grained model has been defined using a similar
methodology as we used here to construct the BSA models
(see Fig. 5(b)).27 Each domain is the center of a bead and in-
tramolecular interactions are parametrized from distributions
of the generalized coordinates from AA simulations (except
dihedrals). The chosen topology is in between a fully con-
nected and a structure-based topology. The three arms of the
“Y” are fully connected within themselves, but the right and
the left part of the “Y” are connected by fewer (and weaker)
bonds. Dihedrals are introduced to stabilize the 3D structure
of the molecule. There has been no investigation of differ-
ent topologies and their associated metrics S and ∆RMSD. We
employ the model as described in the main text and in the sup-
plementary material of Ref. 27. We denote this model IGGo.
From IGGo we derive the model IGGrigid, where all spring
constants are increased by a factor of 100 (see Tab. IV).

To quantify molecule compactness of the coarse-grained
IgG models compared to the proposed BSA models, we com-
pute the radius-of-gyration

Rg =

√

√

√

√

1
Nbeads

〈

Nbeads

∑
i=1

(~ri −~rCOM)2

〉

(3)

in Fig. 6 from CG simulations for different packing fractions
(see App. C for simulation details). Rg for both IgG mod-
els is considerably higher than for all BSA models. Note that
molecules from IGGo are less compact than from IGGrigid for

FIG. 5. (a) Tertiary structure59 of IgG and (b) overlaid CG model
representation. The different colors represent the domains of the
molecule, VH (blue), CH1 (red), CH2 (yellow), CH3 (green), VL
(cyan) and CL (purple). IgG consists of two identical heavy chains
(VH-CH1-CH2-CH3) and two identical light chains (VL-CL). Do-
mains are coarse-grained to beads which are equally sized with
σ

IgG
bead = 30.38Å, refer to App. C for details on the coarse grained

simulations.
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FIG. 6. Radius-of-gyration Rg in coarse-grained simulations for all
molecule models for (a) IgG and (b) BSA, according to Eq. (3).

all packing fractions. In the rigid model, the molecules are
forced by their increased spring constants to be in an extended
equilibrium structure, and this structure does not change un-
der crowding. In contrast, for BSA, all proposed models show
a similar compactness, except the one lacking the stabilizing
dihedral potentials, STRUCTnd. The equilibrium conforma-
tions for this one, along with its flexible counterpart IGGo, are
also influenced by packing effects, leading to more compact
CG molecules at higher Φ.
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III. PAIR CORRELATIONS IN EQUILIBRIUM

A. Effective isotropic model for BSA via the orientation
averaged potential of mean force

Having parametrized several coarse–grained models of
BSA, we can investigate properties of dilute and dense solu-
tions using CG simulations. For these, the bead-bead interac-
tions are taken to be purely repulsive in the form of the Weeks-
Chandler-Anderson (WCA) potential, see App. C, Eq. (C2).
Hence we focus on excluded volume effects which we ex-
pect to dominate in the high-salt regime. As described, the
coarse-grained model is fairly anisotropic and it is not obvi-
ous that a simple isotropic model like (sticky) hard spheres
should describe well the structure and dynamics of BSA in
solution. With regard to structure, equilibrium pair correla-
tions between centers-of-masses of molecules are a standard
measure in the theory of liquids and a good isotropic BSA
model should reproduce those of the anisotropic model. As
a candidate pair potential for the isotropic model, we employ
the free energy for two anisotropic (CG) molecules with their
center-of-mass (COM) distance fixed at r, which is described
by an effective potential (potential of mean force) Ueff(r):60

βUeff(r) =− ln(g0(r))

=− ln
(

∫

Ω1

∫

Ω2

e−βU(r,Ω1,Ω2)dΩ2dΩ1

)

, (4)

where β = 1/(kBT ) and g0(r) is the COM-pair-correlation
function of a system containing only two molecules (dilute
limit), and U(r,Ω1,Ω2) represents the full interaction energy
of the two CG molecules where all the internal degrees of free-
dom of molecule i are denoted by Ωi.

We have determined the effective potential for the special
case of a rigid molecule (which approximately corresponds to
the model FULLrigid). In this case, Ωi corresponds to the ori-
entation of molecule i (as expressed by three Euler angles for
each molecule). The six–dimensional integral is calculated
with 15 grid points per angle and Gauss–Legendre quadra-
ture. The effective potential is a very soft, purely repulsive
potential, see the inset in Fig. 7(a). It can be well fitted by a
Mie-potential61 which is cut-off at its minimum and shifted to
0. It represents a generalization of a WCA potential and it is
given by:

UMie(r) =

{

Cε
[(σMie

r

)n −
(σMie

r

)m]
+ ε if r 6 rcut

0 if r > rcut
, (5)

with C = n
n−m

(

n
m

)
m

n−m and rcut =
(

n
m

)1/(n−m)
σMie. We set

ε = 2kBT = εWCA and fit the effective potential to the Mie
form between σBSA

bead and rcut = 3.0σBSA
bead (maximum inter-

action range of the two CG anisotropic molecules). Fit-
ting the exponents gives rather small values, n ≈ 2.36 and
m ≈ 1.07, and these determine the effective repulsive length
scale σBSA

Mie ≈ 1.63σBSA
bead .

From the effective potential, other effective diameters can
be defined. A first, popular choice is the Barker-Henderson

diameter:62

σBSA
BH =

∫ ∞

0
[1− exp(−βUeff(r))] dr . (6)

A second one may be termed “B2–diameter” σBSA
B2

where B2

is the second virial coefficient and σBSA
B2

is the diameter of a
hard sphere which would have the same B2 as BSA:

B2 = 2π

∫ ∞

0
[1− exp(−βUeff(r))] r2dr

!
=

2
3

π
(

σBSA
B2

)3
. (7)

Both diameters are temperature-dependent. For the cho-
sen temperature βε = 2.0 we find σBSA

BH /σBSA
bead ≈ 2.02 and

σBSA
B2

/σBSA
bead ≈ 2.08, both about 25% larger than σBSA

Mie .
Pair correlations are determined for the anisotropic CG

models (see App. C for simulation details) as well as for
the effective isotropic system (soft spheres), interacting pair-
wise via Ueff(r), using standard Brownian-dynamics simu-
lations of N = 2197 particles. Results are compared for
equal number densities ρ of CG molecules and soft spheres.
Number densities are converted to BSA packing fractions via
Φ = π(σBSA

bead )
3 ρ .

Fig. 7(a) shows the center-of-mass pair-correlation func-
tion gCOM(r) for BSA (FULLrigid) as well as for the soft-
sphere effective systems for BSA packing fractions between
0.1 and 0.4. The curves at the same Φ show good agree-
ment. Note that the height of the first correlation peak is
being exceeded only by ∼ 3% by the spheres. This first
peak also lies further outward for the anisotropic BSA sys-
tems, indicating that the obtained UBSA

eff slightly underesti-
mates sterical incompatibilities. Not shown are results for
gCOM(r) from the other coarse-grained models. However,
FULLo, STRUCTo and STRUCTflex differ only marginally
from FULLrigid. Only STRUCTnd shows a smaller first
peak and consequently weaker oscillations; see the supple-
mentary material. We conclude that the internal degrees of
freedom of the CG molecules are not very important in terms
of the pair correlations, as long as the overall 3D structure
of the molecule is quite stable, and, secondly, the effect of
anisotropy is very well captured simply in the softness of the
isotropic, repulsive potential in the effective system.

B. Effective isotropic model for IgG

We have computed the effective isotropic potential also for
the 12-bead (IGGrigid) model of IgG (with WCA repulsions
between the beads as for BSA), the result is shown in the inset
of Fig. 7(b). The effective potential U

IgG
eff is much softer and

extends to further distances than the one for BSA. For small
COM-distances the potential eventually levels off, indicating
the possibility of penetrating molecule configurations. The
plateau for small r arises, since the COM is not located inside
a bead.

COM pair correlations have been computed for the coarse
grained IgG models as well as for the effective soft sphere
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FIG. 7. Center-of-mass pair-correlation function gCOM(r) for models (a) FULLrigid and (b) IGGrigid (colored lines) and soft spheres (black
lines). Data has been recorded with a bin width of ∆r = 0.01σBSA

bead (0.01σ
IgG
bead, respectively) and then averaged over ten bin widths. Insets:

βUeff(r) obtained by evaluation of Eq. (4) (cyan) and fitted modified Mie-potential Eq. (5) (black dashed line) with σBSA
Mie = 1.63σBSA

bead , n= 2.36,
and m = 1.07. The effective potential for IgG could not be fitted with Eq. (5).

model and compared for equal number densities ρ of
molecules. Number densities are converted to IgG packing
fractions via Φ = 2π(σ

IgG
bead)

3 ρ . The results for soft spheres
and IGGrigid at packing fractions 0.1...0.4 are shown in
Fig. 7(b). (As before for BSA, we do not observe a significant
difference between the coarse-grained models, here IGGo and
IGGrigid.) There is only qualitative agreement between the
pair correlations of the anisotropic CG model and of the ef-
fective soft sphere model. A common feature is that, upon in-
creasing the volume fraction, the first peak moves to smaller
distances (expected for a repulsive system), however, this hap-
pens without an increase in the peak height (uncommon for
a repulsive system and different from BSA). Noticeable dis-
agreement occurs both for lower and higher packing fraction.
At lower packing fraction the soft sphere potential is too soft
in that g

IgG
COM(r) is considerably overestimated for smaller r.

At higher packing fraction g
IgG
COM(r) of the anisotropic CG sys-

tem begins to develop shoulders, indicative of a second repul-
sive length scale within the molecule. This is not seen in the
results from the soft-sphere system.

For the highest packing fraction Φ = 0.4, in the anisotropic
CG model, g

IgG
COM(r) develops a small bump at small r, aris-

ing from interpenetrated molecules. This is presumably an
artefact, pointing to the shortcomings of the relatively basic,
low-resolution, CG force field and specifically having only in-
termolecular WCA repulsions.

IV. DIFFUSION

Using the coarse-grained simulations described in App. C,
we can address the intermediate and long-time diffusion in the
Brownian limit. Note that in the Brownian Dynamics simula-
tions each bead has a constant mobility Γ which defines the
bead diffusion coefficient Dbead

t,0 = kBT Γ. We did not consider
explicit hydrodynamic interactions (HI) in these calculations,
but estimate their effect in the case of translational diffusion
using a multiplicative ansatz using known results in the short-
time limit.

A. Translational diffusion

Fig. 8 shows the translational center-of-mass mean square
displacement (MSD) as a function of time (in logarithmic
scale) for the STRUCTo and IGGo models at infinite dilution
(φ = 0) and at two different volume fractions (φ = 0.2, and
0.4). As expected, for the infinite dilution case the MSD vs.
time curve is linear at all times and shows a single slope for
all time scales.

For the systems with φ > 0, three regimes are observed: (i)
at short times a linear dependence, (ii) at long times another
linear dependence with a different slope, and (iii) a non-linear
behavior between the short and long-time regimes. At short
times, the proteins have not suffered collisions, so the diffu-
sion coefficient (from the slope of the MSD vs. time curve) for
any φ is the same as for the infinite dilute case (as expected
if HI are absent). In contrast, if HI are included, the short-
time diffusion coefficient will depend on φ as HI slow down
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FIG. 8. Ensemble-averaged, center-of-mass MSD(t) of BSA
(STRUCTo) for φ = 0, 0.2 and 0.4. Inset: IgG (IGGo) for the same
packing-fractions. Black solid/dashed lines correspond to fits to the
long-time regime according to Eq. (8).

the motion of the proteins and this slow-down depends on the
concentration of molecules.63 At times between the short and
long-time regime, the MSD becomes non-linear over time,
which is typical for this transient cross-over regime. Finally,
at long times, the diffusion process becomes linear again, but
now the diffusion coefficient decreases as Φ increases. Com-
pared to BSA, the slow-down of translational diffusion of IgG
(inset of Fig. 8) is more pronounced at equivalent packing
fractions due to its protruding, elongated shape. Similar be-
havior was observed for the other models studied (see supple-
mentary material for all other MSDs).

Fig. 9(a) (BSA) and Fig. 9(b) (IgG) show the normalized,
translational, center-of-mass, long-time diffusion coefficients
as a function of the volume fraction for the different models
studied, obtained via fitting the well known relation

MSD(t) = 6Dl
tt (8)

to the long-time regime (ii) of the measured MSD. The nor-
malization is given by the diffusion coefficient in the dilute
limit, Dt,0, which in turn is related to the bead diffusion coef-
ficient by Dt,0 = Dbead

t,0 /N, where N is the number of beads
in the molecule (this is equivalent to the polymeric Rouse
model66).

For all BSA models, except STRUCTnd, the normal-
ized diffusion coefficients are almost indistinguishable from
each other. Also, the data clearly demonstrates the influ-
ence of molecular flexibility on translational self-diffusion.
Both the two most elastic topologies STRUCTnd (BSA) and
IGGo (IgG) diffuse (significantly) faster in crowded condi-
tions than the other coarse-grained models for the respec-
tive molecule. This appears to be easily rationalized in view
of the molecules’ increased ability to deform and bend their

structure in response to their immediate environment. Conse-
quently, steric clashes between two molecules are less likely
to diminish their translational motion. This flexibility with
respect to deformations can be seen well in the reduction of
Rg with increasing packing fraction, see Fig. 6. Also, the ef-
fect of the pronounced anisotropic distribution of exclusion
volume in IgG compared to BSA molecules is captured: At
highest packing Φ = 0.5 translational motion in IgG mixtures
is extremely slow, whereas for BSA significant diffusion can
still be observed.

In order to estimate the effect of hydrodynamic interactions
(which in general slow down diffusion), we employ a multi-
plicative ansatz for the diffusion coefficient, separating short-
time and long-time contributions and resulting in a rescaling
of our obtained coefficients. Such an ansatz has been shown to
deliver accurate results for e.g. hard-sphere systems and also
biomacromolecules.67,68 In detail, let Dl

t,HI resp. Ds
t,HI be the

long-time resp. short-time translational diffusion coefficients
with full HI. Then the ratio between long-time and short-
time coefficients is approximately the same in simulations
with full HI and in simulations without HI, i.e. Dl

t,HI/Ds
t,HI ≈

Dl
t/Dt,0.69,70 Furthermore, the reduced diffusion coefficients

Dl
t/Dt,0 = D̂

l,hs
t (Φl

hs,eff) and Ds
t,HI/Dt,0 = D̂

s,hs
t,HI(Φ

s
hs,eff) shall

be described by the coefficients from a hard-sphere system
with effective packing fractions Φl

hs,eff = αiΦ and Φs
hs,eff =

βiΦ. Here, αi and βi are proportionality constants (not nec-
essarily equal) relating the effective packing fractions to the
packing fractions of the dry protein volume and i stands for
BSA/IgG. Thus:

D̂l
t,HI(Φ)≈ D̂

l,hs
t (αiΦ) D̂

s,hs
t,HI(βiΦ) . (9)

The dimensionless coefficients αi can also be expressed by the
ratio

αi = (σ i,l
hs,eff/σ i

s.v.)
3, (10)

where σ i
s.v. is the diameter of the effective sphere with the

same volume as the dry molecule volume calculated from its
specific volume, see App. C. Thus, this relation defines an
effective hard-sphere diameter for long-time diffusion σ

i,l
hs,eff.

Likewise, an equivalent relation for βi,

βi = (σ i,s,HI
hs,eff /σ i

s.v)
3 , (11)

defines an effective hard-sphere diameter for short-time diffu-
sion.

For the translational diffusion in hard-sphere systems an-
alytic solutions are available. First, the long-time diffusion
of hard spheres without hydrodynamic interactions can be de-
scribed via:69,71

D̂
l,hs
t (Φhs) =

1
1+2Φhsχ

, (12)

with χ being the hard-sphere pair-correlation contact value in
the Percus-Yevick approximation:

χ =
1+(1/2)Φhs

(1−Φhs)2 . (13)
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FIG. 9. Normalized, translational, center-of-mass, long-time diffusion coefficients for the different BSA (a) and IgG (b) models proposed.
Colored symbols are unrescaled values from coarse-grained BD simulations. The black, dash-dotted lines represent fits of D̂

l,hs
t (Φhs = αiΦ)

according to Eq. (12) to the FULLrigid and IGGrigid models, respectively. By rescaling these fits according to Eq. (9), one can heuristi-
cally include the otherwise neglected hydrodynamic slowing-down for a complete quantitative picture (black solid lines). For that, previously
derived values have been used (βBSA = 2.46 from Ref. 23 and βIgG = 2.80 from Ref. 64). Also shown are experimental values from fluores-
cence correlation spectroscopy (FCS) measurements (black up-triangles) by Balbo et al. and (only for IgG) pulsed-gradient spin-echo NMR
measurements (black down-triangles) by Nesmelova et al..24,65

By fitting Eq. (12) to the measured diffusion constants for
FULLrigid and IGGrigid (with Φhs = Φl

hs,eff), it is found
that the long-time self-diffusion without HI of the coarse-
grained protein models is well described by the effective
sphere model (black, dash-dotted lines in Fig. 9(a) and 9(b)),
yielding αBSA = 0.934 and αIgG = 1.66. As effective diame-

ters we thus calculate σ
BSA,l
hs,eff = 52.44Å and σ

IgG,l
hs,eff = 82.36Å.

Note that we only fitted the rigid models for BSA and IgG,
respectively. These effective “dynamic” diameters from our
model complement the “static” ones determined before. For a
full list see Tab. V and the discussion in Sec. V.

Second, short-time diffusion with hydrodynamic interac-
tions in a hard-sphere system can be described with:72

D̂
s,hs
t,HI(Φhs) =

1
1+H(Φhs)

, (14)

with

H(Φhs) =
2b2

1−b
− c

1+2c
− bc(2+ c)

(1+ c)(1−b+ c)
, (15)

where b =
√

9
8 Φhs and c = 11

16 Φhs.
Since we do not have simulation results with hydrodynamic

interactions, for the determination of βi we use experimental
results from Refs. 23 (BSA) and 64 (IgG). There, translational
and rotational short-time diffusion coefficients have been ex-
tracted from neutron scattering experiments via an analytical

separation method23,73 and translational short-time diffusion
coefficients are described well by Eq. (14) with Φhs = βiΦ

and βBSA = 2.46 resp. βIgG = 2.80.
We use these values together with Eq. (9) to rescale our

diffusion coefficients in order to heuristically include the ef-
fect of hydrodynamic interactions, see the solid black line in
Fig. 9(a) and Fig. 9(b). The resulting values are in reasonable
agreement with experimental measurements.

B. Rotational diffusion

In analyzing rotational diffusion for flexible bodies, one
usually has to resort to concepts developed for rotational dif-
fusion of rigid bodies. For these, a principal coordinate sys-
tem can be defined in which the rotational diffusion tensor
of one molecule is diagonal.74 In practice, the principal coor-
dinate system can be found by analyzing the time-dependent
covariance matrix of quaternion coefficients, specifying the
orientational state of a rigid molecule.75 A somewhat simpler
estimate of a rotational diffusion constant Dr often employed
in the literature (e.g. Refs. 24, 76, and 77) can be obtained by
measuring the auto-correlation functions of several unit vec-
tors êi, attached to the center-of-mass of each molecule, point-
ing to each of the beads. Dr can then be obtained via:78

〈Pl [êi(t) · êi(t + τ)]〉= exp [−l(l +1)Dr(Φ) t]. (16)

Here, Pl is the Legendre polynomial of degree l, where in
experiments different techniques probe different relaxation
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modes l = 1,2. An average rotational diffusion constant Dr

is determined by an average over all molecular axes: Dr =
(1/Naxes)∑ax Dax

r .
Note that a more common choice for the unit vectors êi are

the protein’s principal axes of inertia, but those do not nec-
essarily coincide with the principal axes of rotational diffu-
sion, making this choice somewhat arbitrary.76 The authors
of the latter study also investigated the anisotropic rotational
diffusion tensor of a globular protein (ubiquitin) and found
that the average over its eigenvalues coincided with the sim-
ple, isotropic diffusion coefficient. Also note that Eq. (16) has
been originally derived for completely rigid, Brownian rotors.
The issues arising from this fact are discussed below.

Fig. 10(a) shows the decay of 〈P1[ê1(t) · ê1(t + τ)]〉 of axis
1 for FULLrigid (BSA), which can be described well by an
exponential fit. De-correlation of the molecules’ orientations
is fully observed even for the highest packing fractions—very
much in contrast to IGGrigid in Fig. 10(b). Here, for Φ =
0.5, the molecules are in an arrested state, not showing any
significant rotational movement even for the longest observed
times.

Obviously, not all molecular axes are equivalent to each
other. For the two rigid models, the correlator for all axes for
the specific packing fraction Φ = 0.2 is depicted in the insets
of Fig. 10. Here, the deviations between the axes are mod-
erate. To quantify the spread of rotational diffusion between
axes, we calculate a relative standard-deviation of diffusion
coefficients, averaged over all packing fractions:

〈σDr ,rel
model 〉Φ =

〈

(

1
Nax

∑
ax

(

Dax
r −Dr

)2
)1/2/

Dr

〉

Φ

(17)

TABLE V. Relative standard-deviation of rotational diffusion coeffi-
cients for BSA and IgG, Eq. (17).

CG model 〈σDr ,rel
model〉Φ

FULLo 7.80 %
FULLrigid 7.83 %
STRUCTo 8.01 %

STRUCTnd 45.40 %
STRUCTflex 7.94 %

IGGo 13.80 %
IGGrigid 4.27 %

From the results in Tab. V one sees that STRUCTnd for
BSA exhibits a rather large variance of the rotational diffu-
sivity about different axes. Further analysis shows that this
is mainly because of a single axis, directed to bead 1, whose
auto-correlation function is only poorly captured by the expo-
nential fit and whose Dr actually grows with increasing pack-
ing fraction (refer to the supplementary material for fits and
detailed Dr for all axes). This particular axis connects the
COM to bead 1, which sticks out of the molecular plane (com-
pare to Fig. 1(b)). In CG simulations, the equilibrium dis-
tance between the molecules’ COM and bead 1 is the shortest
among all distances of the COM to the beads and it also varies
the most, pointing to a rather floppy mode. Since Eq. (16) is

technically only valid for rigid objects, we omit this particular
axis from the calculation of Dr for all BSA models.

Fig. 11 shows the packing fraction dependence of all ob-
tained axis-averaged rotational diffusion constants. The qual-
itative picture is very similar to the discussed translational dif-
fusion: Flexible topologies rotate faster than rigid ones and
the elongated IgG molecules are locked into position earlier
than the more globular BSA molecules. Rotational diffusion
constants for the l = 2 mode are slightly shifted to higher val-
ues for all models, but qualitatively show the same picture (see
supplementary material).

There is a qualitative difference between rotational diffu-
sion on the one hand and translational diffusion and equilib-
rium pair correlations on the other hand. For the latter, fits
and interpretation in terms of an isotropic colloidal model can
be formulated, resulting in an effective diameter as a single
parameter (as shown, the procedure worked reasonably well
for BSA and somewhat worse for IgG). The packing fraction
dependence of the rotational diffusion constant, however, is
directly linked to the anisotropy of the molecule since there
would be no such dependence for an isotropic model in Brow-
nian Dynamics (if HI are taken into account, such a depen-
dence is present, of course).

To compare translational to rotational slowing-down of dif-
fusion, we present in Fig. 12 the ratio of normalized diffusion
constants,

(

Dl
t/Dt,0

)

/
(

Dr/Dr,0
)

. The data suggests that for
both molecules, translational motion for low to intermediate
packing fractions is more likely to be hindered by crowding
than rotational motion, whereas for the highest packing frac-
tions those differences level out again. This diffusional imbal-
ance is more pronounced for BSA than for IgG. Recent neu-
tron scattering experiments on bovine γ-globulin (antibodies
which are similar to IgG) revealed that short-time diffusion of
the lobes of the antibodies is less affected by crowding than
the global diffusion of the molecules.79 Although this is not
directly comparable to our long-time diffusion constants, lobe
diffusion is also quantified in our simulations by Dr and global
diffusion by Dl

t . Hence, experiments on short-time and our
simulations on long-time diffusion come to a similar, qualita-
tive picture.

V. SUMMARY AND OUTLOOK

In this study a low-resolution, 6-bead, domain-based, flexi-
ble, coarse-grained model for BSA has been formulated. The
corresponding CG force field parameters have been deter-
mined via direct Boltzmann inversion using configurations
from fully atomistic MD simulations. Subsequently, the “fit-
ness” of many different CG models (combinations of force
field components, or topologies) has been quantified via two
simple metrics, comparing equilibrium structure and dynam-
ics of coarse-grained, overdamped Brownian dynamics and
all-atom simulations. As a result, the coarse-grained motion
from atomistic simulations proved to be represented to a very
good extent by an intuitive CG model, where beads are con-
nected according to the amino acid sequence of BSA.

Using Brownian dynamics simulations of the CG model,
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FIG. 10. Ensemble-averaged, rotational auto-correlation function of (a) FULLrigid and (b) IGGrigid in coarse-grained simulations (left-hand
side of Eq. (16)) for l = 1 vs. time together with fits (solid and dashed lines, right-hand side of Eq. (16)). Main plot: Data of axis 1 (center-of-
mass to bead no. 1) for various packing fractions. Insets: Data of all axes for specific packing fraction Φ = 0.2. Data points have been thinned
by a factor of four for better visibility.
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FIG. 11. Normalized, rotational diffusion coefficients obtained via
fits of Eq. (16) to the coarse-grained simulations of all BSA/IgG
models for the l = 1 mode, averaged over all defined molecular axes,
except axis 1 for BSA.

a variety of solution properties have been calculated and
their dependence on molecular flexibility examined. For that
purpose, modified BSA topologies were introduced which
have been artificially made more elastic/rigid compared to
the optimal structure. As a comparison to a more elongated

0.0 0.1 0.2 0.3 0.4 0.5
Volume packing fraction Φ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
l t/
D

t,
0

/

D
r
/D

r,
0

STRUCTo
IGGo

FIG. 12. Ratio of normalized translational and rotational diffusion
coefficients

(

Dl
t/Dt,0

)

/
(

Dr/Dr,0
)

for BSA (STRUCTo) in orange
and IgG (IGGo) in cyan.

CG molecule, we implemented the 12-bead IgG model of
Chaudhri et al..27

By calculating an orientation-averaged, effective potential
Ueff for the CG models we showed that the equilibrium struc-
ture of coarse-grained BSA solutions could be well repre-
sented by effective isotropic spheres, up to relatively high den-
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sities. This procedure was less successful for IgG, which ex-
hibits a too high degree of anisotropy to be captured by its ef-
fective potential. Measurements of radii-of-gyration revealed,
that the most flexible molecule models become more compact
with increasing packing fraction.

We also investigated the translational and rotational diffu-
sivity of our CG models. Here, extracted normalized diffusion
constants of BSA were always larger than those of IgG, how-
ever, molecular flexibility and connectivity also affected the
mobility of the proteins, where molecules from floppy models
diffused faster than molecules from rigid models.

Various effective diameters could be determined from the
definition of the CG model itself, the equilibrium angular-
averaged, effective potential and the translational diffusion
coefficient. From the model itself one may define (i) σBSA

s.v. ,
which represents the volume of the equivalent sphere that
includes the six bead volumes, determined by the specific
volume of BSA (Eq. (C1)). From the equilibrium angular-
averaged, effective potential one may define (ii) the “Mie di-
ameter” σBSA

Mie (see Eq. (5)), (iii) the Barker-Henderson diam-
eter σBSA

BH (see Eq. (6)) and (iv) the “B2-diameter” σBSA
B2

(see
Eq. (7)). The long-time translational diffusion constant from
Brownian dynamics can be interpreted (v) with an effective
hard sphere diameter σ

BSA,l
hs,eff (see Eq. (10)). These values can

be compared with other values from the literature. The ex-
perimentally extracted short-time diffusion coefficient can be
fitted to the one of a hard sphere system, resulting in (vi) the
diameter σ

BSA,s,HI
hs,eff (see Eq. (11)).23 Ellipsoidal form factor fits

in scattering experiments result in a effective diameter (vii)
from small-angle X-ray scattering and (viii) from small-angle
neutron scattering.12,80 Finally, (ix), a “B2-diameter” σBSA

B2,AA
was defined in Ref. 81 from an all-atom representation of BSA
where atoms interact purely hard. The values of these 9 diam-
eters are collected in Tab. V.

TABLE VI. BSA molecule diameters σBSA obtained trough various
methods described in the text.

BSA molecule diameter Result Numeric value [Å]

(i) σBSA
s.v. 1.82σBSA

bead 53.65
(ii) σBSA

Mie 1.63σBSA
bead 48.12

(iii) σBSA
BH 2.02σBSA

bead 59.63
(iv) σBSA

B2
2.08σBSA

bead 61.40

(v) σ
BSA,l
hs,eff 1.78σBSA

bead 52.44

(vi) σ
BSA,s,HI
hs,eff - (72.4)23

(vii)/(viii) σBSA
SAXS / σBSA

SANS - (66.8 / 63.6)12,80

(ix) σBSA
B2,AA - (69.4)81

The effective molecule diameters (i)-(v) from the model are
smaller than the literature values (vi)-(ix). In fact, the de-
termination of the bead-size σBSA

bead of our model is based on
the partial specific volume fraction v0

2 of the pure BSA phase,
given in the literature (see App. C), which neglects hydration
effects stemming from solute-solvent interactions, and there-
fore should be seen as a lower boundary for estimating the
exclusion volume. The bead size directly sets the range of
the repulsive WCA interactions between the beads, and thus

all other static and dynamic diameters can be expected to be
somewhat too small if the bead size is too small. Therefore, in
drawing conclusions regarding a systematic error in defining
an effective diameter of BSA, one should consider the spread
of just the model values derived in this study (approximately
±10% around a mean of about 5.5 nm). This spread reflects
the partial success in colloidal modelling with isotropic sys-
tems. On the other hand, a systematic uncertainty of about
10% is still considerable in some contexts.

As an outlook for further research, several options ap-
pear to be interesting. First, investigations of BSA solu-
tions with trivalent cations have revealed effective, patchy-
like attractions, resulting in liquid-liquid phase separation and
interesting diffusive dynamics.15,18,82–84 Previous theoretical
work employed Wertheim theory for patchy spheres.85 In the
coarse-graining approach, suitable charge and generally more
realistic bead-bead interactions need to be formulated, and it
would be interesting to investigate the interplay of patchiness
and anisotropy, which is known to influence diffusion of pro-
teins to a great extent.86 Secondly, BSA can be used as a crow-
der or tracer in multicomponent systems. Recent work has in-
vestigated diffusion in a binary mixture of BSA and IgG, with
an interpretation in terms of a binary hard sphere system being
quite sensible.87 An explicit investigation using the coarse-
grained models could provide us with more insight on these
findings. In addition, our CG model for BSA together with
the established CG model for IGG opens opportunities for
more realistic simulations of dynamical processes in solutions
modelling blood, as BSA can be used as substitute for human
serum albumin (HSA), which is the most abundant protein in
blood. Finally, the possibility to “calibrate" the short-time dif-
fusion by experimental hydrodynamic interactions and subse-
quently obtain experimentally confirmed long-time diffusion
coefficients from the simulations points towards more accu-
rate predictions of long-time diffusive dynamics in protein so-
lutions in the future.

SUPPLEMENTARY MATERIAL

Generalized coordinate histograms of all-atom simulations;
force field constants; Stype diagrams; force field component

statistics and occurrence probabilities; S and ∆RMSD behav-
ior upon spring constant rescaling; displacement covariance
matrices and Essential Dynamics (ED) analysis; gCOM(r) and
MSD(t) for all models; rotational correlators for STRUCTnd;
Dr for all molecular axes, Dr for l = 1,2.
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Appendix A: All-atom simulations of BSA

Molecular dynamics simulations were conducted with the
GROMACS software package.46 The CHARMM27 force
field88 was used and missing hydrogen atoms where added
using the GROMACS pdb2gmx46 tool. The simulations were
performed in a cubic box of 12.1nm length using periodic
boundary conditions and a Verlet neighbor list. The BSA
molecule (PDB ID: 4F5S)1 was placed in the simulation
box and TIP3P water was added as solvent (55022 water
molecules were added). The total net charge of BSA was
−16e, so 16Na+ ions were added to neutralize the charge of
the system. In addition, 107Na+ and 107Cl– ions were added
to mimic physiological salt concentration (0.1molL−1). The
system was first relaxed using a steepest descend energy min-
imization algorithm with the solvent constrained. Subse-
quently, the water constraint was released and the system was
equilibrated with a leap-frog integrator in the NV T ensem-
ble by velocity rescaling89 with a coupling time constant of
0.1ps for 1ns in total with an integration time step of 2fs,

followed by another 1ns in the NPT ensemble with the same
thermostat and a Parinello-Rahman barostat90 with a coupling
time constant of 2ps and a reference pressure of 1bar. Long-
range electrostatics were treated with a Particle Mesh Ewald
method91 using a Coulomb cutoff of 1.4nm. For the van der
Waals forces we used a cutoff distance of 1.4nm. Subse-
quently, a total of 21 production runs were conducted, each of
them lasting 100ns with an integration time step of 2fs. The
production runs were conducted in the NPT ensemble and the
reference temperature of all thermostats was set to 300K.

Appendix B: CG spring constants from direct Boltzmann
inversion

The functional form of the three types of intramolecular po-
tentials (bond, angle, dihedral) are:

V (r)bond = kbond(r− r0)
2, (B1)

V (θ)angle = kangle(θ −θ0)
2 + kUB(r− r0,UB)

2, (B2)

V (φ)dihedral = kdihedral(φ −φ0)
2, (B3)

where r is the distance between two beads in a bond, θ is the
angle between three beads, and φ is the dihedral angle in a
set of four beads. The spring constants k and the equilibrium
values for the distances, r0,r0,UB and the angles θ0 and φ0 are
parameters of the CG-model and as mentioned above are ob-
tained from all-atom molecular dynamics simulations of BSA.
The process to determine these parameters can be briefly sum-
marized as follows: (i) the motion of the center-of-mass of the
six residue groups reported in Tab. I are tracked in a set of tra-
jectories (for details see App. A) and (ii) this information is
then used to calculate histograms of the generalized coordi-
nates q, i.e. r, rUB, θ and φ . These histograms correspond to
the probability density functions ρ(q) of the generalized coor-
dinates and they are related to the interaction potentials V (q)
by:27

V (q) =−kBT ln[ρ(q)]+ const, (B4)

where T is the temperature and kB is the Boltzmann constant.
By assuming harmonic interaction potentials as well as in-
dependent and uncorrelated movement of residue groups, the
probability distribution ρ of a generalized coordinate q takes
a Gaussian form:

ρ(q) =
1

σ
√

2π
exp
(

− (q−µ)2

2σ2

)

, (B5)

with µ being the mean value of q and σ2 its variance. Taking
above relation with Eq. (B4) yields:

V (q) =
kBT

2σ2 (q−µ)2 + const, (B6)

with the spring constant given by:

kspring =
kBT

2σ2 . (B7)
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ures (a) and (c)) and (5,6) (subfigures (b) and (d)) from all-atom sim-
ulations. Blue symbols correspond to the bond length distribution
averaged over all trajectories. The grey, dashed lines are histograms
obtained from single all-atom trajectories. The black solid lines cor-
respond to the Gaussians p

Bond (2,3)
AA (p

Bond (5,6)
AA , respectively), ob-

tained by using the means and variances of the aforementioned his-
tograms.

Multiple independent all-atom simulations (21 in total) yield
multiple values for µ and σ2 for one and the same general-
ized coordinate. By averaging these means and variances over
all conducted simulations, we obtain an averaged Gaussian
probability distribution p

j
AA for each generalized coordinate

j, from which the final, averaged means and spring constants
are calculated via Eq. (B7).

We illustrate typical results from this procedure in the fol-
lowing. Fig. 13(a) and Fig. 13(b) show the average histograms
of distance between two beads in a bond (average over dif-
ferent all-atom trajectories) for the bonds (2,3) and (5,6) in
blue circles. For both cases, the corresponding Gaussians
p

Bond (2,3)
AA and p

Bond (5,6)
AA (black solid lines), which are ob-

tained by averaging the means and variances of single his-
tograms, are acceptable, but as Fig. 13(b) shows, deviations
from a normal distribution are possible. To analyze these de-
viations, Fig. 13(c) and Fig. 13(d) show the histograms for
each trajectory for the bonds (2,3) and (5,6), respectively. For
the first case, the distributions for all trajectories show similar
mean values and variances, while for the second case the mean
values and the variances show a greater dispersion. This re-
sult highlights the importance of individually assessing each
potential proposed and that adequate sampling is used. The
histograms, averages and the parameters obtained for all the
proposed potentials can be found in the supplementary mate-
rial. For the coarse-grained IgG model the spring constants
and equilibrium values of Ref. 27 have been used.

Appendix C: Coarse-grained simulation details

To investigate the diffusion and dynamics of both molecules
(BSA and IgG) under self-crowding conditions, we per-
form overdamped Brownian dynamics simulations92 of the
CG models in NVT ensemble using the software package
HOOMD-blue.93,94 The bead diameters σ i

bead (i = BSA or
IgG) have been determined by calculating the total volume
of the proteins based on their partial specific volume v0

2,i and
by assuming that all CG sites of the protein occupy the same
volume. In this way, the bead diameters are given by:

σ i
bead = 2

(

miv
0
2,i

Ni

3
4π

)1/3

, (C1)

where mi is the molecular weight of the protein, and Ni is the
number of CG beads (6 for BSA and 12 for IgG). The val-
ues used in the calculations were: v0

2,BSA = (0.733mL/g)95,

mBSA = 66.4kDa, v0
2,IgG = (0.729mL/g)96 and mIgG =

(145.5kDa)27. With these parameters the obtained diame-
ters are σBSA

bead = 29.52Å and σ
IgG
bead = 30.38Å. Notice that

the estimated sizes of the beads are in some cases larger
than the bond lengths, which causes a slight overlapping of
beads. Using a Monte Carlo algorithm we verified that the
overlap fraction for both proteins, V

overlap
BSA /VBSA ≈ 3.2% and

V
overlap
IgG /VIgG ≈ 3.5%, is small so this condition has a negligi-

ble effect on the diffusion. We use a cubic simulation box of
side length L= (NmolecNiπ/(6Φ))1/3 σ i

bead where Φ is the vol-
ume packing fraction. All simulations were performed with
periodic boundary conditions and they contained Nmolec = 343
molecules for both BSA and IgG. We assume a temperature
of 300 K and for convenience we define the units of energy as
kBT = 1, where kB is the Boltzmann constant.

In the CG simulations, proteins only interact via excluded
volume. These intermolecular interactions are modelled by
the use of a shifted Weeks-Chandler-Andersen (WCA) poten-
tial. For two beads of two different proteins the WCA poten-
tial is given by:

VWCA(r) =

{

4ε
[

(d/r)12 − (d/r)6 + 1
4

]

if r 6 21/6d

0 if r > 21/6d
,

(C2)
with d = 2−1/6σ i

bead. All beads for the CG models are consid-
ered to be of the same size. For the strength of the repulsion
we use ε = 2kBT . No electrostatic nor hydrodynamic inter-
actions have been considered. For systems at infinite dilution,
Φ = 0, the intermolecular interactions were disabled and a fi-
nite L has been chosen.

Time units are defined by the diffusion coefficients of free
beads. Specifically, the simulation time unit is defined based
on the Brownian time (τB) as follows:

τB =
σ2

bead

ΓkBT
=

σ2
bead

Dbead
t,0

, (C3)

which allows the particle mobility Γ to be absorbed (i.e. it is
set to 1 for all CG sites). One τB is approximately the time a
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free bead (with translational diffusion coefficient Dbead
t,0 ) needs

to travel its own diameter. A fixed integration time step has
been chosen and set to ∆t = 2× 10−7...1× 10−5 τB, whereas
for the rigid topologies a smaller time step has been selected
in order to correctly sample steeper potentials.

A possible approach97 to approximately convert simula-
tion time to a realistic time scale, is to equate the exper-
imentally measured translational diffusion constant D

exp
t,0 of

the protein at dilute conditions to the one present in simula-
tions, Dsim

t,0 =Dbead
t,0 /N =σ2

bead/τBN, where N is the number of

beads in the molecule (Rouse model66). By taking D
exp,BSA
t,0 ≃

(6.1×10−11 m2/s)98 and D
exp,IgG
t,0 ≃ (4×10−11 m2/s)99 one

derives τBSA
B ≃ 24ns and τ

IgG
B ≃ 19ns.

For each state point 6 - 25 independent systems have
been equilibrated and subsequent production runs lasted
200 - 1000τB. For dense systems in equilibration the simula-
tion box has been scaled down from a larger box to the desired
packing fraction to avoid incompatible starting configurations.
Error bars in graphs show the sample standard deviation of en-
semble averaged values of independent systems.

Appendix D: Selection of an optimal topology for the CG
model

To judge the quality of the CG models specified in the main
text, we introduce a quantity S ∈ [0,1], which acts as a met-
ric of comparison between the averaged center-of-mass move-
ment of the six residue groups in all-atom and bead movement
in coarse-grained simulations. More precisely, it is the com-
mon area of two corresponding discretized and normalized co-
ordinate probability distributions p

j
AA(q

( j)) and p
j
CG(q

( j)) of
a generalized coordinate q( j) with the q( j)-axis ( j enumerates
the generalized coordinate):

S j =
Nbins

∑
i=1

min
(

p
j
AA(q

( j)
i ), p

j
CG(q

( j)
i )

)

. (D1)

Here, p
j
CG and p

j
AA were discretized on the same grid for

bonds (∆r = 0.05Å, r ∈ [10Å,160Å]), angles (∆θ = 0.3◦,
θ ∈ [0◦,180◦)) and dihedrals (∆φ = 0.3◦, φ ∈ [−180◦,180◦)).
Randomly generated topologies yielding bond lengths outside
the grid interval were considered unstable and thus omitted.
The p

j
CG were recorded in CG simulations of non-interacting

molecules (see below) and p
j
AA were obtained by mapping

the calculated average Gaussians (from all-atom simulations)
of Eq. (B5) onto the grid. The probability distributions were
then normalized.

For illustration, see Fig. 14 for an exemplary S for j =
Bond(1,3). Further, we calculate the mean S̄ of all gener-
alized coordinates of the same type:

Stype =
1

Ntype

Ntype

∑
j=1

S j, (D2)

with type∈ [Bonds, UB-Bonds, Angles, Dihedrals], as well as

their collective mean ¯̄S:

S = ∑
type

NtypeStype

/

∑
type

Ntype. (D3)

Hereby, the calculation of S̄ and ¯̄S always includes the full
set of all recorded generalized coordinate distributions of the
FULL topology, as specified in Tab. II. In the generation of
random topologies described in the text, only interaction po-
tentials are disabled, but the corresponding generalized coor-
dinate is not taken out of the calculation of S̄.

The other measure for an optimal model is based on
the commonly used root-mean-square deviation (RMSD, see
Eq. (1)), of i) the positions of coarse-grained beads for CG
simulations and ii) the centers-of-mass of the six residue
groups defined in Tab. I for all-atom simulations. The opti-
mal trans- and rotational superposition of the structure at time
t to itself at t = 0 has been conducted via a quaternion based
algorithm100,101 implemented in the molecular dynamics soft-
ware package MDAnalysis,102,103 which we also use to pro-
cess simulation trajectories.

The average 〈·〉 in Eq. (1) is an ensemble average, which, in
all-atom simulations, comes from averaging over 21 indepen-
dent trajectories of well equilibrated BSA molecules which
have different starting positions for the centers-of-mass of the
six residue groups. The first 10ns of these trajectories have
been omitted and the RMSD was sampled every 0.25ns. See
App. A for details on all-atom simulations.

In CG simulations, it is realized as follows: For each of the
4735 individual coarse-grained models, four independent sys-
tems, each containing 27 non-interacting (Φ = 0) molecules
of the respective model, are placed in a simulation box and,
after equilibration, the RMSD(t) for each individual molecule
is calculated. These RMSDs are then averaged. In this ex-
act same manner all coarse-grained probability histograms
pCG(q) of Eq. (D1) are calculated. Production runs with a
time step of ∆t = 10−6 τB lasted 10τBD, whereby observables
have been sampled every 5000 time steps.
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