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When a plate is withdrawn from a liquid bath a coating layer is deposited whose thickness and
homogeneity depend on the velocity and the wetting properties of the plate. Using a long-wave mesoscopic
hydrodynamic description that incorporates wettability via a Derjaguin (disjoining) pressure we identify
four qualitatively different dynamic transitions between microscopic and macroscopic coatings that are out-
of-equilibrium equivalents of known equilibrium unbinding transitions. Namely, these are continuous and
discontinuous dynamic wetting and emptying transitions. Several of their features have no equivalent at

equilibrium.
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The equilibrium and nonequilibrium behavior of meso-
scopic and macroscopic drops, menisci, and films of liquid
in contact with static or moving solid substrates is not only
of fundamental interest but also crucial for a large number
of modern technologies. On the one hand, the equilibrium
behavior of films, drops, and menisci is studied by means of
statistical physics. A rich substrate-induced phase transition
behavior is described even for simple liquids, e.g., related
to wetting and emptying transitions—both represent
unbinding transitions well studied at equilibrium. In a
wetting transition, the thickness of an adsorption layer of
liquid diverges continuously or discontinuously at a critical
temperature or strength of substrate-liquid interaction; i.e.,
the liquid-gas interface of the film unbinds from the liquid-
solid interface [1]. In an emptying transition, a macroscopic
meniscus in a tilted slit capillary develops a tongue (or foot)
along the lower wall. The foot length diverges logarithmi-
cally at a critical slit width; i.e., the tip of the foot unbinds
from the meniscus and the capillary is emptied [2].

On the other hand, it is a classical hydrodynamic problem
to study how droplets slide down an incline [3-6], how
moving contact lines (where solid, gas and liquid meet)
develop sawtooth shapes at high speeds [6-8], or how the
free surface of a bath is deformed when a plate is drawn out,
as sketched in Fig. 1(a). Early on it was reported that for
sufficiently large plate velocities U a homogeneous macro-
scopic liquid layer is deposited on the plate [Fig. 1(d)]. The
resulting coating layer is called a Landau-Levich film. Far
away from the bath its thickness /., depends on the capillary
number Ca = yU /y through the power law &, & Ca?/3 [9]
where 5 and y are the viscosity and surface tension of the
liquid, respectively. This coating technique is widely used
and became a paradigm for theoretical (e.g., Refs. [6,9-12])
and experimental (e.g., Refs. [13—17]) studies.

In contrast, at very low plate velocities U no macroscopic
film is drawn out but a deformed steady meniscus coexists
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with the dry plate far away from the bath [8,16,18-20]
[Fig. 1(b)]. This meniscus only exists for capillary numbers
smaller than a critical one, Ca, [18]. Close to Ca, the
meniscus develops a foot of a length L, [Fig. 1(c)] that
diverges at Ca, either continuously [21] or discontinuously
[19]. As the steady free surface meniscus coexists with the
dry moving plate, there exists a receding three-phase
contact line whose best description is still debated (see,
e.g., Refs. [1,22,23]).

Previous works [18,19,21] employ a slip model that
allows the film height to go to zero at the contact line and
avoids the contact line singularity through the slip [1].
Although a slip model allows for individual quantitative
studies of meniscus solutions and Landau-Levich films, it is
not able to describe transitions between them, as in a
slip model they are topologically different. Namely, for
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FIG. 1 (color online). Sketches of (a) the considered two-
dimensional geometry and (b)—(d) of the qualitatively different
steady shapes h(x) of the free liquid surface as found in
experiments: (b) simple meniscus, (c) foot or extended meniscus,
and (d) Landau-Levich film. In (a) a flat plate inclined at an angle
a to the horizontal is drawn out of a bath of a nonvolatile partially
wetting liquid at a speed U.
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meniscus and foot solutions the film height goes exactly to
zero at the contact line, whereas for film solutions the
coating thickness approaches a constant value at infinity,
and there is no way to continuously transform one type of
solutions into another [cf. Figs. 1(b) and 1(c) vs Fig. 1(d)].
Note that this concerns the actual transition dynamics as
well as the description of transitions in dependence of
control parameters such as the plate speed.

In contrast, here we employ a long-wave mesoscopic
hydrodynamic model that describes wettability via a
Derjaguin (disjoining) pressure, i.e., a precursor film
model. An investigation of the nonequilibrium transitions
between meniscus solutions and Landau-Levich films then
allows for an identification of four qualitatively different
dynamic unbinding transitions, namely, continuous and
discontinuous dynamic wetting and emptying transitions.
Note that far from the transition regions, the predictions of
precursor and slip models agree very well and can be
quantitatively mapped [24].

In particular, we use the following nondimensionalized
evolution equation for the film thickness profile h(x,1)
[22,25,26]:

0,h = ~0, {0, (0% + TI(W)|~hG(0,h — @) — Uh}. (1)

that may be derived as long-wave approximation of the
Navier-Stokes and continuity equations with no-slip con-
ditions at the liquid-solid interface and kinematic and stress
balance conditions at the liquid-gas interface [27]. Here U,
G, and a are the dimensionless parameters that represent
plate velocity (Capillary number), gravity (Bond number),
and the scaled O(1) inclination angle of the plate, respec-
tively (see note [28]). The wettability of the partially
wetting liquid is described via the Derjaguin pressure [29]
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derived in Ref. [30] from a modified Lennard-Jones
potential with hard-core repulsion (see note [28]). The
disjoining pressure is related to a wetting or adhesion
energy f(h) via Il = —df/dh. The employed scales are
£ = \/3/5heq/Ocqs heq and 7 = (3nheq)/(2576%,) for the x
coordinate, film height, and time, respectively, where heq
and 6, are the equilibrium precursor height and contact
angle, respectively (cf. note [28]).

It should be noted that the hydrodynamic long-wave
model, Eq. (1) with Eq. (2), directly corresponds to a
gradient dynamics of an underlying interface Hamiltonian
(or free energy) F[h] = [[&y + f(h)]dx as often used to
study the above introduced equilibrium unbinding transi-
tions (cf. note [31]). This equivalence allows for a natural
understanding of the various occurring transitions as non-
equilibrium (or dynamic) unbinding transitions.

I1 =

To obtain steady film and meniscus profiles, we solve the
steady version of Eq. (1) requiring that far from the bath
the film thickness approaches a constant value %, and that
the approach towards the bath is described by an asymp-
totic series rigorously derived via a center manifold
reduction [32]. Steady profiles and bifurcation diagrams
are numerically obtained employing pseudo-arclength con-
tinuation [33]. The main solution measure is the dynamic
excess volume AV =V —V, with V = [(h(x) — hy,)dx,
where V(, is V at U = 0. Note that for solutions with a long
protruding foot-like structure, AV is approximately propor-
tional to the length of the foot [34].

An analysis of the changes that steady menisci undergo
with increasing plate speed U shows that four qualitatively
different cases exist depending on the plate inclination
angle a. Each case is related to a distinguished non-
equilibrium unbinding transition as illustrated in Fig. 2.

(a) At small a, the volume AV monotonically increases:
first slowly, then faster until it diverges at U, ~ 0.04
[Fig. 2(a)]. The corresponding simple meniscus profiles
first deform only slightly due to viscous bending before a
distinguished footlike protrusion of a height i, ~ 10 devel-
ops whose length L ; diverges o« In [(Uy, — U)/U]~". This
corresponds to a continuous dynamic emptying transition, a
nonequilibrium analogue of the equilibrium transition dis-
cussed above (cf. Ref. [2]). In other words, at U, the tip of
the foot unbinds from the meniscus and the bath is emptied.
For U > Uy, the foot advances with a constant velocity
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FIG. 2 (color online). Bifurcation curves showing qualitatively
different behavior with increasing plate inclination angles (a)
a=0.1,(b) a=1, (c) a =3, and (d) a = 10. The main panels
show AV/L in dependence on the plate velocity U, where L =
1000 is the domain size. The insets give log-normal representa-
tions of steady film profiles as indicated by corresponding labels.
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Viex (U-Ug) as shown in Fig. 3, in a finite system,
ultimately resulting in a Landau-Levich film state.

(b) Above a first critical @ = a; ~ 0.103, the transition
changes its character and becomes a discontinuous dynamic
emptying transition that has no analogue at equilibrium. As
shown in Fig. 2(b), AV increases first monotonically with
U until a saddle-node bifurcation is reached at U, where the
curve folds back. Following the curve further, one finds that
it folds again at U,. This back and forth folding infinitely
continues at loci that exponentially approach U , from both
sides and that separate linearly stable and unstable parts of
the solution branch. This exponential (or collapsed) snak-
ing [36] results in a foot length with [(Uy, — U)/U] ™" «
exp(Re[v]L) x sin(Im[v|L ;) where v is a linear eigenvalue
whose real and imaginary part determine the exponential
approach and the period of the snaking, respectively [32].
Note that for U > U, one can always find a critical foot
length beyond which the foot advances with a constant
velocity Vp~ (U — Ug), ultimately resulting in a film
state. In contrast, for U < U, there is always a critical
length above which a foot recedes. Advancing and receding
fronts are illustrated in Fig. 3(a) for @ = 0.1, 0.2 and 0.5.
Panels (b) and (c) show for a = 0.5 the time evolution [35]
of a receding and an advancing foot, respectively. In both
previously described regions, (a) and (b), one finds that
hy « Ug'/?. The limiting velocity U%, coincides with the
velocity of a large flat drop (pancakelike drop) sliding
down a resting plate of inclination « [4]. This allows one to
calculate U, by continuation (see Fig. 5 below). Note that
the found relation for the front velocity Vp=x~ U — U%,
[Fig. 3(a)] is a direct consequence of the Galilean invari-
ance of the motion of a drop down an incline.
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FIG. 3 (color online). (a) Advancing and receding footlike
structures are characterized by the dependence of the velocity Vg
of the front that connects the ultrathin coating layer with the foot
plateau of height /2 on the velocity difference U — Ug, where Ug,
changes with the plate inclination @. Note that the curves for
various a collapse onto a master curve, Vy &~ U — UZ,. Panels (b)
and (c) show for a = 0.5 the time evolution [35] of a receding and
an advancing foot, respectively, at values of U indicated by small
letters in panel (a). The evolution in (b) converges to a steady
simple meniscus, while in (c) the foot advances with constant
speed until its tip reaches the domain boundary.

(c) At a second critical @ = a, = 2.42, the bifurcation
diagram dramatically changes. Above a, the family of
steady menisci that is connected to U = 0 does not any-
more diverge at a limiting velocity U,. Instead of a
protruding foot of increasing length that unbinds from
the meniscus one finds a hysteretic transition [in Fig. 2(c)
between U = 0.2 and 0.3] towards a coating layer whose
thickness homogeneously increases with increasing U i.e.,
the layer surface unbinds from the substrate in a discon-
tinuous dynamic wetting transition.

(d) With increasing « the hysteresis of the discontinuous
transition becomes smaller until at a third critical o =
a3 ~ 5.92 the two saddle-node bifurcations annihilate in a
hysteresis bifurcation as further illustrated in Fig. 4. For all
a > a3 one finds a continuous dynamic wetting transition.
As in cases (c) and (d), at large U the coating layer
thickness follows the power law Ay, « U3, we identify
these unbinding states as Landau-Levich films [9]. The
critical velocity, where the transition between the micro-
scopic and macroscopic layer occurs, scales as /2.

Note that the dynamic emptying transitions of cases (a)
and (b) and the crossover between them are also observed
employing a slip model [19,21] and for case (b) the foot
structure and even an unstable part of the snaking curve
have been experimentally observed [8,16]. The slip model,
however, does not take the mesoscale wetting behavior into
account and is therefore unable to describe the discontinu-
ous and continuous dynamic wetting transitions of cases (c)
and (d), respectively, as these represent transitions between
the topologically different meniscus and film solutions.
Note, that slip models that incorporate mesoscale wetting
behavior exist [37,38] and could in the future be used to
analyze drawn menisci with both effects present.

To summarize our findings, we present in Fig. 5 a phase
diagram in the (U, a) plane as obtained by tracking the
main occurring saddle-node bifurcations (black solid lines)

FIG. 4 (color online). The film height of thick (macroscopic)
coatings scales following the Landau-Levich law, ., « U for
U Z 1. The shown curves correspond to equidistant inclination
angles with @ € [2.42,10] and Aa = 0.25. The arrow indicates
increasing a. The thick dashed line indicates the transition from
discontinuous to continuous dynamic wetting transitions at as.
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FIG. 5 (color online). The phase diagram in the (U, «a)
parameter plane shows regions of different behavior that are
limited by the loci of (i) saddle-node bifurcations of steady film
surface profiles (black solid lines) and (ii) by the dependence of
the limiting velocity U, on a (blue dotted line). The existence of
an additional solution family close to U, in region (c) is
indicated by grey shading.

and the limiting velocity U, (blue dashed line). In region
(a), i.e., for 0 < @ < a;, ultimately a simple or extended
(footlike) steady meniscus is found for U < U, while
for U > U, the foot advances at constant speed V=~
(U-Uy) Icf. Fig. 3(a)]. In region (b), i.e., for
a; < a < a,, multiple stable foot solutions exist for U
between the two solid lines. However, for each U with
U, > U > U there is always a maximal stable foot length
L.« towards which a longer foot will retract. For each U
with U, > U > U, there is always a maximal unstable
steady foot length L}, beyond which the foot will advance
continuously. Ly, [Li.] logarithmically diverges as U
approaches U, from below [above].

In region (c), i.e., for @, < @ < a3, the lines of saddle-
node bifurcations limit a region where initial conditions
decide whether an ultrathin layer or a macroscopic Landau-
Levich coating is obtained. Below [above] the hysteresis
range one only finds the ultrathin [Landau-Levich] coating.
In region (d), i.e., for @ > a3, the change between the two
coating types is continuous.

Finally, we highlight some further important facts. The
crossover between regions (a) and (b) is related to a change
of the character of the spatial eigenvalues (EVs) of a flat
film of foot height [21,32]: In region (a) all EVs are real
while in region (b) one is real and the other two are complex
conjugate. The crossover between regions (c) and (d)
results from a hysteresis bifurcation where two saddle-
node bifurcations annihilate. However, the crossover
between regions (b) and (c) that results in the strong
qualitative change, from a dynamic emptying to a dynamic
wetting transition, cannot be understood by considering a
single branch of profiles. Instead, the crossover results from
a reconnection that involves two solution branches (see
Fig. 6). In consequence, in the fine grey band around U, in
region (c) [Fig. 5], there exist various stable extended
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FIG. 6 (color online). Detail of the transition from case (b) to (c)
and full bifurcation diagram gathering the two families of
solutions. One observes that the transition occurs via a
reverse—necking bifurcation at @ = a, and that Landau-Levich
films are present below a,.

meniscus profiles. They correspond to the left branch in
Fig. 6(b). Experimentally, they might only be obtained
through a careful control of the setup at specific initial
conditions. Figure 6 also explains why Landau-Levich film
states may be dynamically accessed even at a < a,
(cf. Fig. 3).

To conclude, we have shown that a long-wave meso-
scopic hydrodynamic description of the coating problem
for a plate that is drawn from a bath allows one to identify
several qualitative transitions if wettability is modeled via a
Derjaguin pressure. As a result we have distinguished four
dynamic unbinding transitions, namely continuous and
discontinuous dynamic emptying transitions and discon-
tinuous and continuous dynamic wetting transitions. These
dynamic transitions are out-of-equilibrium equivalents of
well-known equilibrium emptying and wetting transitions.
Besides features known from equilibrium, our analysis has
uncovered important features that have no equivalents at
equilibrium. A future study of the influence of fluctuations
might allow one to understand which surface profile is
selected in the multistable regions.
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